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Abstract 
In this chapter, we consider single-electron effects in transport through nanoscale devices. These 
effects are ubiquitous in quantum dot physics, but in recent years their observation in molecular 
transport has triggered important new research efforts. In this case, the experimental results show 
a rich variety of features which enables us to extract lots of information about the physics of these 
structures. We shall show that most of this information can be extracted in the case where the 
coupling of the active region to the leads is weak; in this sense we are in the opposite limit of the 
previous chapter in this volume. Note however, that precisely on the border of the two regimes, 
that is, with intermediate coupling, we can observe the richest behaviour. We shall very briefly 
outline the physics of different transport processes through three-terminal devices and then focus 
on the single-electron effects.  

1. Introduction: Three-terminal devices and quantization 
In electronics, we manipulate charges by sending them through devices. These devices have a 
few terminals: a source which injects the charge, and a drain which removes the charge from the 
device. Sometimes, a third terminal, called gate, is present, which is used to manipulate the charge 
flow through the device. The gate does not inject charge into or remove it from the device. Three 
terminal devices are standard elements of electronic circuits, where they act as switches or as 
amplifying elements. Semiconductor-based three-terminal switches are responsible for the 
tremendous increase in computer speed over the last few decades.  

Feynman, in his famous lecture [1], has pointed out that the possible scale reduction from the 
standards of that period was still enormous, and he also suggested that quantum mechanical 
behavior may result in a different way of operation of the devices, which may open new horizons 
for applications. Indeed, as we know by now, two aspects become important when the size of the 
device is reduced. The first aspect is indeed the quantum mechanical behavior, and the second is 
the quantization of the charges flowing into and out of the devices. It is interesting to analyze how 
the energy scales at which the two effects become noticeable, depend on the device size.  

The charge quantization is subtle in view of quantum mechanics: in principle, the charge carried by 
an electron is distributed in space. In quantum mechanics, a single charge may be distributed 
according to |ψ(r)|2, where ψ(r) is the quantum mechanical wave function, and this leaves open the 
possibility of having a fractional charge inside the device. Therefore, the discrete nature of charge 
does not seem to play a role in the charge transport. However, if the device would be uncoupled 
from its surroundings, we would only find integer charges residing on it. This puzzle is solved by 
realizing ourselves that the expectation value of  the electrostatic energy, which must be included 
into the Hamiltonian governing the electron behavior,  is dominated by the charge distribution 
which occurs most of the time. It can be shown that the charge within a device that is weakly 
coupled to its surroundings, is always very close to an integer. Therefore, in order to observe 
Coulomb effects resulting from the discreteness of the electron charge, we must consider devices 
that are weakly coupled to the surroundings.  

For the charge quantization the energy scale associated with the discreteness of the electron 
charge is given by 
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where is the capacitance of the device. This is the energy needed to add a unit charge to the 
device – it is called the charging energy. Taking as an estimate the capacitance of a sphere with 
radius R, we have  
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where, in the rightmost expression, R  is given in atomic units (Bohr radii), as is the energy (EH is 5 
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the atomic unit of energy – it is called the Hartree and it is given by 27.212 eV). In section 4, we 
shall present a more detailed analysis for the case where the device is (weakly) coupled to a 
source, drain and gate.  

The energy scale for quantum effects is given by the distance between the energy levels of an 
isolated device. As a rough estimate, we consider the particle in the (cubic) box problem with 
energy levels separated by a level splitting ∆ given by 
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where m is the electron mass and  is the box size (which must be given in atomic units in the 
rightmost expression). The multiplicative constant is of order 1; it depends on the geometry and on 
the details of the potential. 
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In the case of carbon nanotubes, the device is much smaller in the lateral direction than along the 
tube axis. In such cases it is useful to distinguish between the two sizes. The lateral size leads to a 
large energy splitting and the longitudinal splitting may become vanishingly small. For a metallic 
nanotube, the level spacing associated with the tube length is  L
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where is the Fermi velocity v  with . Fv mkFF /h= smvF /108 5⋅≈

Equations (1) and (2) tell us how the typical Coulomb and quantum energies scale with the device 
size (R or ). In Figure 1 we show several experimental realizations of small devices that may be 
weakly coupled to source, drain and gate. Most of these devices have the layout shown in Figure 
2. Table 1 gives an order of magnitude estimate for the charging energy and level splitting for 
some typical three-terminal devices. Semiconducting and nanotube quantum dots have been 
studied in great detail and their behavior is fairly well understood; at the time of writing the 
properties of molecular quantum dots are still much less established mainly because it is difficult to 
fabricate them in a reliable way.   
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When we study transport through a small island, weakly coupled to a source and a drain, we can 
obtain information about the quantum level splitting ∆ and the charging energy Ec if we can control 
the energy of the particles flowing through the device with precision high enough to resolve these 
energy splittings. Pauli’s principle tells us that electrons can only flow from an occupied state in the 
source to an empty state in the drain. The separation between empty and occupied states in the 
leads is only sharp enough when the temperature is sufficiently low. We see that low operation 
temperature is essential for observing the quantum and charge quantization effects. The energy 
scale associated with the temperature is given by , so we must have TkB

cB ETk ,∆≤ . 
Note that for molecular devices, with their relatively large values of ∆  and , quantum and 
charge quantization effects should still be observable at room temperature. In a typical metallic 
island, , and the Coulomb blockade dominates the level separation. In this case we 
speak of a classical dot, see also chapter 21 of this volume. 
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TkB<<∆

In this chapter we explain different aspects of charge transport with emphasis on devices in which 
the level spacing and the charging energy plays an essential role in the transport properties. This 
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is the case in quantum dots and in many molecular devices.  

2. Description of transport 
In this section, we present a qualitative discussion of the different transport mechanisms. In the 
following section we shall then focus on the weak-coupling case. 

A major question is what picture we should use to describe transport through small devices. In 
solids, we usually think of the electrons in terms of the independent particle model, in which the 
wave function of the many-electron system is written in the form of a Slater determinant built from 
one-electron orbitals. This is an exact solution for a Hamiltonian, which is a sum of one-electron 
Hamiltonians: 
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The electrostatic repulsion between the electrons: 
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does not satisfy this requirement. Also, the electrons couple electrostatically to the motion of the 
nuclei, which interact among themselves via a similar Coulomb interaction. Several schemes exist 
for building a Hamiltonian like (3) in which the interaction between the electrons is somehow 
moved into a, possibly non-local, average electrostatic potential. The best known such schemes 
are the Hartree-Fock (HF) and the density functional theory (DFT). The question is now whether 
the independent electron picture can survive in the study of transport through small devices. The 
answer is that single-electron orbitals still form a useful basis for understanding this transport, but 
that the Coulomb and electron-nucleus interaction have to be included quite explicitly into the 
description in order to understand single-electron effects. 

2.1. Structure of nanoscale devices  
Although it often cannot be used in the transport itself, the single particle picture is still suitable for 
the bulk-like systems to which the device is coupled, and for the narrow leads which may be 
present between the island and the bulk reservoirs. These elements are described in chapter 1 
and we shall only briefly recall their properties with emphasis on the issues needed in the context 
of the present chapter. 

The reservoirs are bulk-like regions where the electrons are in equilibrium. These regions are 
kept at some temperature, and the number of electrons is variable as they are connected to the 
voltage source and the leads to the device (see below). The electrons in these reservoirs are 
therefore distributed according to Fermi functions with a given temperature T and a chemical 
potential 
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In order to have a current running through the device and the leads, the source and drain 
reservoirs are connected to a voltage source. A bias voltage causes the two leads to have different 
chemical potentials. 

The leads. Sometimes it is useful to consider the leads as a separate part of the system, in 
particular for convenience of the theoretical analysis. The leads are channels, which may be 
considered to be homogeneous. They form the connection between the reservoirs and the island 
(see below). They are quite narrow and relatively long. Electrons in the leads can still be described 
by single-particle orbitals. If the leads have a discrete or continuous translational symmetry, the 
states inside them are Bloch waves. We can write the states as 

),( yxue T
zikz                (4) 
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We see that the states can be written as a transverse state times a wave. The quantum numbers 
of the transverse wave function are used to identify a channel.  

In this chapter we usually do not make a clear distinction between reservoirs and leads: they are 
both simply described as baths in equilibrium with a particular temperature and chemical potential 
(which may be different for the source and drain lead). However, for a theoretical description of 
transport, it is often convenient to study the scattering of the incoming states into outgoing states – 
in that case, the simple and well-defined states of the leads facilitate the description. 

The island. This is the part of the system, which is small in all directions (although in a nanotube, 
the transverse dimensions are much smaller than the longitudinal) – hence, this is the part where 
the Coulomb interaction plays an important role. To understand the device, it is useful to take as a 
reference the isolated island. In that case we have a set of quantum states with discrete energies 
(levels). The density of states of the device consists of a series of delta-functions corresponding to 
the bound state energies.  

Now imagine we have a knob by which we can tune the coupling to the leads. This is given in 
terms of the rate Γ  at which electrons cross the tunnel barriers separating the island from the 
leads. The transport through the barriers is a tunneling process. This process is fast, and in most 
cases we can consider it to be elastic: the energy is conserved in the tunneling process.Generally 
speaking, when the island is coupled to the leads (or directly to the reservoirs), the level broadens 
as a result of the continuous density of states in the leads (or reservoirs), and it may shift due to 
charge transfer from the leads to the island. Two limits can be considered. For weak coupling, 

, the density of states should be close to that of the isolated device: it consists of a 
series of peaks, the width of which is proportional to 

h/
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SΓ  and DΓ  respectively. For strong coupling, 
that is, Γ , the density of states is strongly influenced by that of the leads, and the 
structure of the spectrum of the island device is much more difficult to recognize in the density of 
states of the coupled island. 
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If we keep the number of electrons within the island fixed, we still have the freedom of distributing 
the electrons over the energy spectrum. The only constraint is the fact that not more than one 
electron can occupy a quantum state as a consequence of Pauli´s principle. The change in total 
energy of the device is then mainly determined by the level splitting which is characterized by the 
energy scale ∆. If we want to add or remove an electron to or from the device, we must pay or we 
gain a charging energy respectively.   

Note that, in principle, Γ may depend on the particular charge state on the island. This is expected 
to be the case in molecules: the charge distribution usually differs strongly for the different orbitals 
and this will certainly influence the degree in which that orbital couples to the lead states.  

At this stage, we should emphasize an important point. From statistical mechanics, we know that a 
particle current is driven by a chemical potential difference. Therefore, the chemical potential of the 
island is the relevant quantity driving the current to and from the leads. However, in an 
independent particle picture, a single particle energy is identical to the chemical potential (which is 
defined as the difference in total energy between a system with 1+N and particles). Therefore, 
if we speak of a single-particle energy of the island, this should often be read as ‘chemical 
potential’. 
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2.2. Transport 
For an extensive discussion of the issues discussed in this paragraph we refer to Datta’s 
monograph [2]. 

As we have seen above, in the device we can often distinguish discrete states as (Lorentzian) 
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peaks with finite width in the density of states. A convenient representation of transport is then 
given in Figure 3. In this picture, the effect of the gate is to shift the levels of the device up and 
down, while leaving the chemical potentials
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Sµ  and Dµ of the leads unchanged (for small devices, 
the gate field is inhomogeneous due to the effect of the leads; moreover, the electrostatic potential 
in the surface region of the leads will be slightly affected by the gate voltage). 
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The transport through the device can take place in many different ways. We will now give a few 
classifications which are helpful to understand the transport characteristics of a particular transport 
process.  

Coherent−incoherent. First of all, the transport can be coherent or incoherent. This notion 
pertains to an independent particle description of the electrons where the electrons occupy one-
particle orbitals. In the case of coherent transport, the phase of the orbitals evolves 
deterministically. In the case of incoherent processes, the phase changes in an unpredictable way 
due to interactions which are not contained in the independent particle Hamiltonian. Such 
interactions can be the electron-electron interactions, or the electron-phonon interactions, or the 
interactions between the electrons and an electromagnetic field.  

If the electrons spend a long time on the island, which happens when the couplings to the leads 
are weak, the decoherence will be complete. Only for short traversal times, the phase will be well 
preserved.  

Elastic−inelastic. Another distinction is that between elastic and inelastic transport. In the latter 
case, interactions may cause energy loss or gain of the electrons flowing through the device. This 
energy change may be caused by the same interactions as those causing decoherence (electron-
electron, electron-phonon, electron-photon). Note however that decoherent transport can still be 
elastic. 

Resonant−off-resonant. This classification is relevant for elastic tunneling in combination with 
weak coupling to the leads. In resonant transport, we inject electrons at an energy corresponding 
to a resonance of the island. Such a resonance corresponds to a discrete energy level of the 
isolated device. The transport resonance energy corresponds to the center of the shifted peak. 
This is seen as a peak in the transport current for that energy, or, more specifically, an increase of 
the current as soon as a resonance enters the bias window. The fact that the coupling to the leads 
is weak causes the time an electron resides in the device to be rather long. If this time is longer 
than the time it takes for the electron orbital to lose its coherence, we speak of sequential 
tunneling, as the transport process can then be viewed as electrons hopping from the lead to the 
island where they stay a while before hopping off to the drain. 

First-order versus higher-order processes. The standard technique for calculating the current 
arising from coherent processes is time-dependent perturbation theory. In this theory, the transition 
from one particular state to another is calculated in terms of transitions between the initial, 
intermediate and final states. The first-order process (top of Fig. 3) corresponds to a direct 
transition from the initial to the final state and, for this process, the current is proportional to the 
couplings between device and leads. In first-order processes, the current decays rapidly with the 
energy difference between the closest discrete level on the island and the Fermi energies of the 
leads (∆E in Fig. 3). Second order transported processes, often called co-tunneling, take place via 
an intermediate state as illustrated in the bottom panel of Fig.3. In these processes, the current is 
proportional to higher powers of the couplings, but they are less strongly suppressed with 
increasing distance (in energy) between the states in the leads and on the island. Therefore, they 
may sometimes compete with, or even supersede first order processes, provided the intermediate 
state is sufficiently far in energy (chemical potential) from those in the leads. Currents due to 
second-order processes vary quadratically with the coupling strengths.  

Γ

In off-resonant transport through molecules with more than one site, the dominant transport 
mechanism is through higher-order processes, which in electron transfer theory are known as 
superexchange processes. 

Direct tunneling. It should be noted that if the device is very small (for example a molecule), there 
is a possibility of having direct tunneling from the source to the drain, in which the resonant states 
of the device are not used for the transport. 
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We start this section by studying resonant transport qualitatively [2]. Suppose we have one or 
more sharp resonant levels which can be used in the transport process from source to drain. We 
neglect inelastic processes inside the device during tunneling from the leads to the device or vice 
versa. In order to send an electron into the device at the resonant energy, we need occupied 
states in the source lead. This means that the density of states in that lead must be nonzero for the 
resonant energy (otherwise there is no lead state at that energy), and that the Fermi-Dirac 
distribution must allow for that energy level to be occupied. Furthermore, for the electron to end up 
in the drain, the states in the drain at the resonant energy should be empty according to Pauli’s 
principle. We conclude that for the transport to be possible, the resonance should be inside the 
bias-window. This window is defined as the range of energies between the Fermi energies of the 
source and the drain. 

The process is depicted in Figure 3 (top). From this picture we can infer the behavior of the current 
as a function of the bias voltage. We see that no current is possible (left panel) for small bias 
voltage as a result of a finite difference in energy E∆ between the energy of the resonant state on 
the island and the nearest of the two chemical potentials leads. The current sets off as soon as the 
bias window encloses the resonance energy (right panel). Further increase of the bias voltage 
does not change the current, until another resonance is included. The mechanism described here 
gives rise to current-voltage characteristics shown in Figure 4.  
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Two remarks are in order. First, the picture sketched here supposes weak coupling and low 
temperature. Increasing the temperature blurs the sharp edge in the spectrum between occupied 
and empty states, and this will cause the sharp steps seen in the curve to become rounded. 
Second, the differential conductance, as a function of the bias voltage V shows a peak at 
the positions where the current steps up.  

VI /
dVdI /

In the previous section we have seen that the coupling DS Γ+Γ=Γ  between leads and device can 
be given in terms of the rate at which electrons hop from the lead onto the device. From this a 
heuristic argument leads via the time-energy uncertainty relation to the conclusion that Γ gives us 
the extent to which an energy level
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0E on the island is broadened. Simple models for leads and 

device yield a Lorentzian density of states on the device: 
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Further analysis, which is based on a balance between in- and outgoing electrons gives the 
following expression for the current:  
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Remember the bias voltage (the potential difference between source and drain) is related to the 
chemical potentials Dµ and Sµ as  35 
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0>e is unit charge. A positive bias voltage drives the electrons from right to left and the current is 
then from left to right; we define this as the positive direction of the current. 

If the density of states has a single sharp peak, then current is only possible when this peak lies 
inside the bias window. Indeed, replacing by a delta-function centered at directly gives )(ED 0E

 
1 Note that the energy E should be identified with the chemical potential of the island, see the remark in the previous 
section. 
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At low temperature, the factor in square brackets is 1 when  lies inside the bias window and 0 
otherwise. We see that the maximum value of the current is found as 
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For low temperature, the Fermi functions in (4) become sharp steps, and the integral of the 
Lorentzian can be carried out analytically, yielding 
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Equation (4) is valid in the limit where we can describe the transport in terms of the independent 
particle model. It has the form of the Landauer formula: 

[ ]∫ −−−= dEEfEfETeI SFDDFD )()()( µµ
h

, 10 

11 
12 
13 

which is discussed extensively in chapter 1 of this volume. In that chapter it is shown that the 
transmission per channel (which corresponds to the eigenvalues of the matrixT ) has a 
maximum value of 1, so that the current assumes for low temperatures a maximum value of  
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where  is the number of channels inside the bias window. Note that this maximum occurs only for 
reflectionless contacts, for which a wave incident from the leads onto the device, is completely 
transmitted. This usually occurs when the device and the leads are made of the same material. We 
have given the strong-coupling result Eq. (7) in order to emphasize that the two results (5) and (7) 
hold in quite opposite regimes.  

n

Often, in experiments the differential conductance dI  is measured. This can be calculated 
from expression (4): 
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where  denotes the first derivative of the Fermi-Dirac distribution with respect to its argument 
and 

'
FDf
( 2/DS )µµµ += . The parameterη specifies how the bias voltage is distributed over the 

source and drain contact; for 
24 

2/1=η  this distribution is symmetric. For 0=T , the Fermi-Dirac 
distribution function reduces to a step function. Its derivative is then a delta-function. For low 
bias ( , the integral picks up a contribution from both delta functions occurring in the integral 
in Eq. (8). The result is 
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where the energy E is taken at the Fermi energy of either the source or the drain. As the maximum 
value of  is given as  )(ED
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it follows that the maximum of the differential conductance occurs when DS Γ=Γ  and is then given 33 
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by . Note that this holds even when the current is much smaller than the quantum 
conductance limit (see Eq. (7)) which follows from the Landauer formula. 
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At finite temperature, for  and zero bias, working out the derivative with respect to bias of 
Eq. (8) gives: 
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6 This line shape (see Figure 5) is characterized by a maximum value , 
attained when the gate voltage reaches the resonance V

( )DSBDS Tke Γ+ΓΓΓ 4/2

eE /00 = . The full-width half maximum 
(FWHM) of this peak is 

7 
αeTkB /525.3 . The parameter α is the gate coupling parameter: the 

potential on the island varies linearly with the gate voltage,
8 

GVIV ∆=∆ α . These features are often 
used as a signature for true quantum resonant behavior as opposed to classical dots, where the 
small value of renders the spectrum of levels accessible to an electron continuous. For a 
classical dot, the FWHM is predicted to increase by a factor 1.25 [3,4]. Note that in a quantum 
dot sets a lower bound for the temperature dependence of the peak shape: for the peak 
height and shape are independent of temperature (not visible in figure 5 due to the small value for 

chosen there).  
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Interestingly, the finite width of the density of states, which is given by DS Γ+Γ , can in principle be 
measured experimentally from the resonance line widths at low temperature. Note that the 
expressions for the current and differential conductance only depend on the combinations 

andSΓ ( DSDS Γ+ΓΓ /Γ . If both are extracted from experimental data, the values of and 
can be determined (although the symmetry between exchange of source and drain prevents us 

from identifying which value belongs to the source).  
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4. Constant interaction model 
In section 1.1 we have seen that in the weak-coupling regime, energy levels can be discrete for 
two reasons: quantum confinement (the fact that the state must `fit’ into a small island) and charge 
quantization effects. The scale for the second type of splitting is the charging or Coulomb energy 
Ec. It is important to realize that this energy will only be noticeable when the coupling to the leads is 
small in comparison with Ec. This situation is called the Coulomb blockade regime. In the Coulomb 
blockade regime, we should make a clear distinction between one or two electrons occupying a 
level: their Coulomb interaction contributes significantly to the total energy. We may analyze the 
transport process in the so-called constant interaction model [3]. This model is based on the setup 
shown in Figure 6. Elementary electrostatics gives the following relation between the different 
potentials and the chargeQ  on the island: 

QVCVCVCV GGDDS =−− ,     

where . Note that this equation can be written in the form: GDS CCC ++=

C
QVI + , 35 

36 

37 
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with  

( ) CVCVCVV GGDDSext /++ . 

We see that the potential on the dot is determined by the charge residing on it and by the induced 
potential V of the source, drain and gate.  ext

We take as a reference configuration the one for which all voltages and the charge are zero. The 
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electrostatic energy with respect to this reference configuration after changing the source, drain 
and gate potentials and putting electrons (of charge 

1 
N e− ) on the island is then found as the work 

needed to put this extra charge on the island and the energy cost involved in changing the external 
potential when a charge is present: 

2 
3 
4 Q

( ) ext

VNe

VQ
extIES NeV

C
NeQdVdQVNU

ext

ext

−=+= ∫
−

== 2
)()(

2,

0,0

. 5 

6 
7 
8 

The integral is over a path in  space; it is independent of the path, i.e. of how the charge and 
external potential are changed in time. 

extVQ,

The result for the total energy, including the ‘quantum energy’ due to the orbital energies is 

∑
=

+−=
N

n
next ENeV

C
NeNU

1

2

2
)()( . 9 

10 
11 
12 
13 
14 
15 

The energy levels  correspond to states which can be occupied by the electrons in the device 
provided their total number does not change − changing this number would change the Coulomb 
energy, which is accounted for by the first term. This expression for the total energy is essentially 
the constant interaction model. 

nE

From non-equilibrium thermodynamics, we know that a current is driven by a chemical potential 
difference − hence we should compare the chemical potential on the device, 

Next EeV
C
eNNUNUN +−−=−−=

2

)2/1()1()()(µ ,    (10) 16 

17 
18 
19 

with that of the source and drain in order to see whether a current is flowing through the device. 
From the definition of V  we see that the effective change in the chemical potential due to a 
change of the gate voltage (while keeping source and drain voltage constant), carries a factor 

; this is precisely the gate coupling, which we call the 

ext

CCG / α -factor. This factor was mentioned 
already at the end of section 3. 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

It is important to be aware of the conditions for which the constant interaction model gives a 
reliable description of the device. This is first of all weak coupling to the leads. A second condition 
is that the size of the device should be sufficiently large to make a description with single values for 
the capacitances possible. Finally, the single-particle levels must be independent of the 
charge . The constant interaction model works well for weakly coupled quantum dots for which it 
is very often used. For molecular devices however, the presence of a source and drain being big 
chunks of conducting material with a very narrow gap in between, reduces the gate field to be 
barely noticeable close to the leads and far from the gate. This inhomogeneity of the gate field may 
lead to a dependence of the gate capacitanceC  with due to the difference in structure of 
subsequent molecular orbitals, and the chemical potential on the molecule will vary nonlinearly 
with the gate potential. 

nE
N

G N

As we shall see below, we can infer the distance between the different chemical potential levels 
from three-terminal measurements of the (differential) conductance. This distance is given by 

NN EE
C
eNN −+=−+ +1

2

)()1( µµ . 35 

36 
37 
38 
39 

Note that the difference in energy levels occurring in this expression (EN+1 – EN) is nothing but the 
splitting  mentioned at the very beginning of this chapter. For typical metallic and semiconductor 
quantum dots, this splitting is usually significantly smaller than the charging energy, so that this 
quantity determines the distance between the energy levels: 

∆
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Note that this addition energy is twice the energy of a charge on the dot (as the addition energy is 
the second derivative of the energy with respect to the charge).  

 We now study the current as a function of bias and gate voltage. In section 2.2 we have seen that, 
in the weak coupling regime and at low temperature, the current is suppressed when all chemical 
potential levels lie outside of the bias window. As we can tune the location of these levels using the 
gate voltage, it is interesting to study the current and differential conductance of the device as a 
function of the bias and of the gate voltage.  

Now we can calculate the line in the V  plane which separates a region of suppressed current 
from a region with finite current. This line is determined by the condition that the chemical potential 
of the source (or drain) is aligned with that of a level on the island. We again assume the drain to 
be grounded as in Figure 2. From our expression (10) for the chemical potential and using the 
definition forV , we find the following condition for the chemical potential to be aligned to the 
source (keeping the dot’s charge constant): 

GV,

ext

( )CG VVV −= β , 15 

where )/( DGG CCC +=β and ( )
e
E

C
eN N

C +−= 2/1V , i.e. the voltage corresponding to the 

chemical potential on the dot in the absence of an external potential. If the chemical potential is 
aligned with the drain, we have 

16 

17 
18 

( )GC VVV −= γ  19 

with SG CC /=γ . The expressions given here are specific for a grounded drain electrode. 
Irrespective of this distribution however, it holds that 

20 
21 

γβα
111

+==
GC
C

. 22 

23 
24 
25 
26 
27 

Each resonance generates two straight lines separating regions of suppressed current from those 
with finite current. For a sequence of resonances, we obtain the picture shown in Figure 7a. The 
diamond-shaped regions are traditionally called `Coulomb diamonds,’ as they were very often 
studied in the context of metallic dots, where the chemical potential difference of the levels is 
mainly made up of the Coulomb energy. The name is also used in molecular transport, although 
this is strictly speaking not justified there as ∆ can be of the same order as the Coulomb interaction.   28 

29 From the Coulomb diamond picture we can infer the values of some important quantities. First of 
all, we consider two successive states on the molecule with chemical potentials 1µ∆  and 2µ∆ . Let 
us suppose that both states have the same gate coupling parameter

30 
α . We then see that the 

upper and lower vertex of the diamond both are at a distance  
31 
32 

e
E

e
NN

V add=
+−

=∆
)1()( µµ

 33 

34 
35 
36 
37 

38 
39 
40 
41 

from the zero-bias line. The difference in chemical potentials is known as electron addition energy, 
. If the addition energy is dominated by the charging energy, we can find the total capacitance. 

Combining this with the slopes of the sides of the diamond, which give us the relative values of 
,  and C , we can find all these capacitances explicitly.  

addE

GC SC D

An interesting consequence of the previous analysis is that, if the capacitances do not depend on 
the particular state we are looking at, the height of successive Coulomb diamonds is constant. If, in 
addition to the Coulomb energy, a level splitting is present, this homogeneity will be destroyed, as 
can be seen in Figure 7b which shows the diamonds for a carbon nanotube (CNT) [5]. The 
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alternation of a large diamond with three smaller ones can be nicely explained with a model 
Hamiltonian [6]. In the case of transport through molecules there is no obvious underlying structure 
in the diamonds.  

The electron addition energy is sometimes connected to the so-called HOMO-LUMO gap. These 
acronyms stand for Highest Occupied (Lowest Unoccupied) Molecular Orbital, and denote orbitals 
within an independent particle scheme. If the Coulomb interaction is significant, the HOMO-LUMO 
gap can be related to the excitation energy for an optical absorption process in which an electron is 
promoted from the ground state to the first excited state, without leaving the system. In that case, 
the change in Coulomb energy is modest, and the energy difference is mostly made up of the 
quantum splitting ∆ . Note however that the HOMO and LUMO are usually calculated using some 
computational scheme where the orbitals are calculated for the ground state configuration, that is, 
without explicitly taking into account the fact that all orbitals change when e.g. an electron is 
excited to a higher level. 

The addition energies are partly determined by quantum confinement effects and partly by 
Coulomb effects. A difficulty is that these energies will be different for a molecular junction, in 
which a molecule is physi- or chemisorbed to conducting leads, than for a molecule in the gas 
phase. There are several effects responsible for this difference. First of all, if there is a chemical 
bond present, the electronic orbitals extend over a larger space, which reduces the confinement 
splitting. Secondly, a chemical bond may cause a charge transfer from lead to molecule, which 
causes the potential on the molecule to change. Thirdly, the charge distribution on the molecule 
will polarize the surface charge on the leads, which can be represented as an image charge. The 
image charges have the effect of reducing the Coulomb part of the addition energy. In experiments 
with molecular junctions, often much smaller addition energies are observed than in gas-phase 
molecules. At the time of writing, there is no quantitative understanding of the addition energy in 
molecular three-terminal junctions, although the effects mentioned here are commonly held 
responsible for the observed gaps.  

5. Charge transport measurements as a spectroscopic 
tool 

A stability diagram can not only be used for finding addition energies, but it can also form a 
spectroscopic tool for revealing subtle excitations that arise on top of the ground state 
configurations of an island with a particular number of electrons on it. These excitations appear as 
lines running parallel to the Coulomb diamond edges. An example taken from Ref. [7] is shown in 
Figure 8a; the white arrows point at the excitation lines. At such a line, a new state (electronic or 
vibrational) enters the bias window, creating an additional transport channel. The result is a step-
wise increase of the current and a corresponding peak in the differential conductance. The energy 
of an excitation can be determined by reading off the bias voltage of the intersection point between 
the excitation line and the Coulomb diamond edge through the same argument we used for finding 
addition energies. The excitations correspond to the charge state of the Coulomb diamond they 
end up in (see Fig. 8c). The width of the lines in the plot (or, equivalently, the voltage range 
over which the step-wise increase in the current occurs) is determined by the larger one of the 
energies k  and . In practice this means that sharp lines and thus accurate information on 
spectroscopic features are obtained at low temperatures and for weak coupling to the leads. Note 
that on the other hand the current is proportional to

dVdI /

TB Γ

Γ  (Eqs. (4) and (5)) so that the should not be 
too small; a Γ  in the order of 0.1-1 meV seems to be a typical number in experiments that allows 
for spectroscopy.  

Γ43 
44 
45 
46 
47 

An important experimental issue is that for a particular charge state lines are often only visible on 
one side of the Coulomb diamond as illustrated in Fig. 8a, lower right panel. This is due to an 
asymmetry in the coupling, i.e., for SD Γ>>Γ (or DS Γ>>Γ ). Figure 9 shows the situation at the two 
`main’ diamond edges. A thick and a thin barrier between the island and source/drain represent 
these anti-symmetric couplings. It is clear that if the chemical potential in the lead connected 
through the thin barrier is the higher one, the island will have one of its transport channels filled. 
The limiting step for transport is the thick barrier, and only the occupied orbital will contribute to the 

48 
49 
50 
51 
52 
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current. When an extra transport orbital becomes available, this will only have a minor effect on the 
total current. If, on the other hand, the chemical potential of the lead beyond the thick barrier is 
high, the transport levels on the island will all be empty. The lead electrons which must tunnel 
through the thick barrier have as many possible channels at their disposal as there are possible 
empty states: the more orbitals, the more channels there are, and therefore the higher the 
increases stepwise each time a new excitation becomes available. 

5.1. Electronic Excitations 
In order to study how detailed information on the electronic structure of the island can be obtained 
from conduction measurements, we consider a system consisting of levels that are separated in 
energy by the ∆i (see Fig. 10). Note that this level splitting does not include a charging energy: the 
levels can be occupied in charge-neutral excitations. For one extra electron on the island, N = 1, 
the ground state is the one in which it occupies the lowest level. As discussed before, as soon as 
this level is inside the bias window, current starts to flow, thereby defining the edges of the 
Coulomb diamonds. When the bias increases further, transport through the excited level becomes 
possible. This leads to a step-wise increase of the current since there are now two states available 
for resonant transport, and this increases the probability for electrons to pass through the island. 
Note that both levels cannot be occupied at the same time, as this requires a charging energy in 
addition to the level splitting. The resulting peak in the  forms a line (red) inside the 
conducting region (blue), ending up at the 

dVdI /
"1" =N  diamond (white) as is illustrated in Fig. 8c. 

( in this case).  A second excitation is found at
19 

1∆=exE 21 ∆+∆ ;. subsequent excitations intersect 

the diamond edge at bias voltages , but they are only visible if 

20 

∑∆
i

i Ce
i
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Now we consider the case where two electrons are added to the neutral island ( ). When two 
electrons occupy the lower orbital, the Fermi principle requires their spin to be opposite. The first 
excited state is the one in which one of the electrons is transferred to the higher orbital, which 
costs an energy of . A ferromagnetic exchange coupling favors a triplet state with a parallel 
alignment. If we take only exchange interactions between different orbitals into account, this results 
in an energy gain of  with respect to the situation with opposite spins. Thus the first excitation is 
expected to be at  and the second one (corresponding to opposite spins)

2=N

1∆

1∆

J
∆1 J−  at . The energy 

difference between the two excitations in Fig. 8c gives us a direct measure of . In some systems, 
may be negative (antiferromagnetic case) and the antiparallel configuration has a lower energy. 

J
J
The simple analysis presented here  captures some of the basic features of few-electron 
semiconducting quantum dots [8] in which the charge states to which the levels belong can be 
identified. Also in metallic carbon nanotube quantum dots the complete electron spectrum has 
been determined [5,9].  Although for a nanotube many densely spaced excitations occur, level 
spectroscopy is possible since the regularly spaced levels are well separated from each other 
with . Careful inspection of the excitation and addition spectra of carbon nanotubes shows 
that the exchange coupling is ferromagnetic and that it is small: of the order of a few meV or 
smaller. Further identification of the states can be performed in a magnetic field with the Zeeman 
effect as a diagnostic tool. Singlet states are expected to split into two levels; triplet states into 
three.  

∆≈cE
J

One last remark concerns the  diamond. In systems such as semiconducting quantum dots, 
where there is a gap separating the ground state from the first excited state,  can be of the 
order of hundreds of meV.  In that case, no electronic excitations are expected to end up in this 
diamond.  

0=N
1∆

5.2. Including vibrational states 
An interesting phenomenon in molecular transport occurs when the molecular vibrations couple to 
the electrons, giving rise to excitations available for transport as mentioned above. This 
phenomenon has been studied quite extensively in recent years and here we shall briefly discuss 
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the basics. For details, we refer to [10,11]. 

Molecules are rather floppy, and from classical mechanics, we know that small deformations of a 
molecule with respect to its lowest energy conformation can be described in terms of normal 
modes. These are excitations in which all nuclei oscillate with the same frequency ω (although 
some nuclei may stand still). In particular, these excitations have the form 

4 
5 

6 )exp()( )()(
,

)(
, tiXtR ll

i
l
i ωαα = , 

where  is the Cartesian coordinate)(l
iR α zyx ,,=α of nucleus ; l labels the normal mode; is a 

fixed vector which determines the amplitudes of the oscillation for the degree of freedom labeled 
by 

i )(
,
l
iX α7 

8 
α,i . The vibrations are described by a harmonic oscillator, which has a spectrum with energy 

levels separated by an amount :  
9 

10 

11 

12 
13 
14 

)(lωh

( ) ....,2,1,0,2/1)()( =+= ννων
llE h . 

For molecular systems, the normal modes are often called vibrons (in analogy with phonons in a 
periodic solid). These modes couple with the electrons as the electrons feel a change in the 
electrostatic potential when the nuclei move in a normal mode. The coupling is determined by the 
electron-vibron coupling constant which is calledγ . 15 

16 
17 
18 
19 
20 
21 

The presence of vibrational excitations can be detected in transport measurements. It should be 
noted that, for this to happen, the vibrational modes must be excited, which can happen for two 
reasons: either the thermal fluctuations excite these modes, or they can be excited through the 
electron-vibron coupling.  

In order to study the effect of electron-vibron coupling on transport, we restrict ourselves to a single 
vibrational mode and a single electronic level for simplicity. The nuclear part of the Hamiltonian is 

22
2

2
1

2
XM

M
PH ω+=  22 

(P , X and M represent the momentum, position and mass of the oscillator). 23 
24 The electron-vibron coupling has the form 

0/ˆ uXnH ve ωγh=− , 25 

26 where is the number operator, which counts the charge in the orbital under consideration; n̂
)2/(0 ωMu = h is the zero-point fluctuation associated with the ground state of the harmonic 

oscillator. The electron-vibron coupling
27 

γ  is given as (ϕ is the electronic orbital): 28 

ϕϕ
ωω

γ
X
H

M
el

∂
∂

=
1

2
1 h

h
. 29 

When the charge in the stateϕ  increases from 0 to 1, the equilibrium position of the harmonic 
oscillator (i.e. the minimum of the potential energy) is shifted over a distance 

30 

02 uγ− along X , and 
it is shifted down in energy. This is shown in Figure 11a. Fermi’s golden rule says that the 
transition rate for going from the neutral island in the conformational ground state to a charged 
island in some excited vibrational state is proportional to the square of the overlap between the 
initial and final states. Hence this rate is proportional to the overlap of the ground state of the 
higher parabola and the excited state in the shifted one (to be multiplied by the coupling between 
lead and island). This overlap is called the Frank-Condon factor. It is clear that for large 
displacements, this overlap may be larger for going to some vibrationally excited state than for 
going to the vibrational ground state of the shifted oscillator. The Franck-Condon factors can be 
calculated analytically. For a single vibrational mode, this can be done particularly easily. 
Supposing that the frequency does not change for the charged state, the Franck-Condon factor for 
going from the vibrational ground state to the excited state 
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ν is in that case given by 42 
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The sequential tunneling regime, which corresponds to weak coupling, can be described in terms 
of a rate equation: the master equation. The master equation describes the time evolution of the 
probability densities for the possible states on the molecular island. The master equation can be 
used for any sequential tunneling process; it is particularly convenient when vibrational excitations 
play a role. For the simple examples of transport considered in the previous sections, however, it 
was not necessary to invoke this formalism. 

On the molecular island, the states are characterized by the number of electrons in staten ϕ on the 
island and on the excitation level 

8 
ν of the vibrational mode (we restrict ourselves to a single 

vibrational mode and a single electronic level) and the spin. The probability densities of the island 
states are denoted by

9 
10 

);,,( tnP σν (σ is the spin coordinate). Their values change in time due to 
transitions. These transitions consist of electrons hopping from the leads onto the island or vice-
versa. We do not take the states in the leads into account explicitly – their influence is reflected in 
the transition rates

11 
12 
13 

)( ,,',, τνσν mn →T . We first focus on the case where an electron hops from 
the source onto the island. As the probability for an electron in the source to occupy an energy

14 
E is 

given by
15 

)(EfS) ≡(Ef S− µ , we have for a transition in which an empty state on the dot becomes 
occupied: 

16 
17 

)]'([)',,(),1,'0,0,( ννωννϕσνν −+=→ + haS EfRT . 18 

19 
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Hopping from the island to the drain requires a state on that lead to be unoccupied, and we find for 
the transition rate: 

{ })]'([1),',()0,0,,1,'( ννωννϕνσν −+−=→ − haD EfRT . 21 
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Having these transition rates, we can write down a Master equation involving transitions from 
unoccupied to an occupied state and vice versa. This equation describes the change in the 
probability density );,,( tnP σν due to the two processes described above: 24 
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A similar equation can be written for the unoccupied probability density. In the end, the 
probabilities should satisfy 

∑
=

=
σν

σν
;1,0;

.1),,(
n

nP   

In the stationary situation, the time derivative on the left hand side must vanish, and the Master 
equation, together with the normalization condition, reduces to the linear and homogeneous 
equation  

0=TP , 

where is a matrix and a vector. We therefore search for a vector in the one-dimensional 
subspace of the matrix . This is a straightforward task for a computer. In the end we calculate 
the current from the two rates: 

T P
T

[ ]∑ →−→−=
',

),1,'()0,0,,1,'(),0,(),1,'0,0,(
nn

PTPTeI σννσνσνσνν . 

The generalization of this analysis to more than one level is straightforward. 

The figures 11b and 11c have been made using such a Master equation analysis. Note that, if 
vibrational modes are excited, they may in turn lose their energy through coupling to the leads or 
other parts of the device. This can be represented by an effective damping term for the nuclear 
degrees of freedom. 
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In bulk systems the electron-vibron coupling is generally weak and the coupling constant is orders 
of magnitude smaller than one. Since the coupling dramatically increases with decreasing device 
mass, molecular and nanotube quantum dots may exhibit an intermediate to strong electron-vibron 
coupling. We can then consider three regimes in describing the influence of vibrational modes on 
transport: The weak electron-vibron coupling regime with 

1 
2 
3 
4 

1<<γ , the intermediate regime with 5 
11.0 ≤≤ γ , and the strong coupling ( 1>>γ ) limit. The boundaries in the intermediate regime are 

somewhat arbitrary. In the weak coupling regime the height of the first steps is close to one as in 
the case without electron-vibron coupling; all the others steps are much smaller by an factor 
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!/2 νγ ν 2. In practice this means that no harmonics can be observed and consequently vibrational 
modes cannot be probed in a transport experiment.  Only for sufficiently strong electron-vibron 
coupling, one or multiple steps can be observed as has been demonstrated in molecular junctions 
with C60 [7] (see Figure 8a), C140 [12] and in suspended carbon nanotubes [13]. The spectrum 
should be harmonic allowing for an accurate determination of ωh . 13 
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In the strong electron-vibron coupling limit, steps are only expected for larger voltages as the 
height of the first steps is exponentially suppressed. This suppression holds for any gate voltage 
and as a result the current at low bias is suppressed in the whole gate range [14] . Degeneracy 
points are no longer visible in the stability diagrams and one speaks of phonon blockade of 
transport. This phenomenon can also be understood by realizing that, for small bias, the shift in 
energy caused by the electron hopping onto the island, would move the resonant level outside the 
bias window so that transport is blocked. There exists one report on the experimental observation 
of this effect in a suspended semiconducting dot [15]; in molecular junctions such a suppression 
has also been observed but a detailed analysis in the context of phonon blockade has not been 
performed.  

It is interesting to note a correspondence with optical techniques such as Raman spectroscopy for 
fingerprinting a mixture of molecules, where the energy lost by incident light photons scattered by a 
molecule peaks at precise values determined by the normal modes of vibration. A set of modes 
then makes up a fingerprint unique to each molecule and provided that a sample contains a 
reasonable number of molecules, it is then straightforward to determine its identity and, to some 
degree, its constituent elements. While a direct form of Raman spectroscopy does not exist for a 
single molecule trapped between electrodes, we have seen above that electrons, instead of light, 
may be used to excite the vibrational states of a conducting molecule (inelastic electron tunnelling 
spectroscopy).  Especially for junctions with small molecules such as H2 [16] and C60 [7] this has 
been proven to be a useful technique. In a molecular junction containing a larger molecule, many 
vibrational modes may be present, making it more difficult to assign excitation lines to a particular 
mode. Finally, it is also expected that the vibrational frequencies of molecule attached on both 
sides, shift with respect to those of the gas phase, and that modes with new symmetries occur, 
such as rotations of the whole molecule. 

6. Second-order processes 
In the analysis so far, sequential tunneling events do not contribute to the current inside Coulomb 
diamonds as they are blocked in these regions. However, one should realize that elastic co-tunnel 
processes as depicted in Fig. 3, upper graph, always take place albeit that the current levels are 
generally very small: For second order processes, the current is proportional to  instead of a 
linear dependence (on ) for first-order processes. Consequently, cotunneling becomes 
more important for larger Γ.In some cases higher order coherent processes involving virtual states,  
give rise to observable features inside Coulomb diamonds. In this section we shall discuss two 
examples: the Kondo effect in quantum dots, which is an elastic co-tunneling process conserving 
the dot energy, and inelastic co-tunneling, which leaves the dot in an excited state. 

DSΓΓ

DS Γ+Γ

 
2 We assume that the system is highly dissipative, so that the molecule is in the vibrational ground state before an 
electron hops on or of. 
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6.1 Kondo effect in a quantum dot with an unpaired electron 1 
2 
3 
4 
5 
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The Kondo effect has long been known for causing a resistance increase at low temperatures in 
metals with magnetic impurities [17]. In recent years, Kondo physics has also been observed in 
semiconducting [18], nanotube [19] and single-molecule quantum dots [20]. It arises when a 
localized unpaired spin interacts by antiferromagnetic exchange with the spin of the surrounding 
electrons in the leads (see Fig. 12a). The Heisenberg uncertainty principle allows the electron to 
tunnel out for only a short time of about E∆/h , where E∆ is the energy of the electron relative to 
the Fermi energy and is taken positive. During this time, another electron from the Fermi level at 
the opposite lead can tunnel onto the dot keeping the total energy of the system conserved (elastic 
co-tunneling). The exchange interaction causing the majority spin in the leads to be opposite to the 
original spin of the dot causes the probability for the new electron to have spin opposite to the first 
to be very high. This higher order process gives rise to a so-called Kondo resonance centered 
around the Fermi-level. The width of this resonance is proportional to the characteristic energy-
scale for Kondo physics, T . For 
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K Γ>>∆E ,  is given by: KT14 
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Typical values for T  are 1 K for semiconducting quantum dots, 10 K for carbon nanotubes and 50 
K for molecular junctions. This increase of T  with decreasing dot size can be understood from the 
prefactor, which contains the charging energy (U ). 

K

K

Ce /2=

In contrast to bulk systems, the Kondo effect in quantum dots leads to an increase of the 
conductance, as exchange makes it easier for spin states belonging to the two electrodes to mix 
with the state (of opposite spin) on the dot, thereby facilitating transport through the dot. The 
conductance increase only occurs for small bias voltages and the characteristic feature is a peak in 
the trace of the differential conductance vs. bias voltage (see Fig. 10b, red lines). The peak occurs 
at zero bias inside the diamond corresponding to an odd number of electrons. (For zero spin, no 
Kondo is expected; For  a Kondo resonance may be possible but the Kondo temperature is 
expected to be much smaller.) The full width at half maximum (FWHM) of this peak is proportional 
to T : FWHM ≈ . Eq. (11) indicates that T  is gate dependent because 

1=S

e/K Tk KB2 K E∆  can be 
tuned by the gate voltage. Consequently, the width of the resonance is the smallest in the middle 
of the Coulomb blockade valley and increases towards the degeneracy point on either side. 

27 
28 
29 
30 
31 
32 

]

Another characteristic feature of the Kondo resonance is the logarithmic decrease of the peak 
height with temperature. In the middle of the Coulomb blockade valley, the maximum conductance 
is given by: 

[ ,
)/)(12(1

)(
2/1 s

K
s

C

TT

G
TG

−+
=        (12) 33 
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where  for spin-1/2 impurities and G  for symmetric barriers. For asymmetric 
barriers G  is lower than the conductance quantum. Eq. (12) shows that for low temperatures, the 
maximum conductance of the Kondo peak saturates at while at the Kondo temperature it 
reaches a value of . 

22.0=s

C

heC /2 2=

CG
2/CG

6.2 Inelastic-cotunneling 
The inelastic co-tunneling mechanism becomes active above a certain bias voltage, which is 
independent of the gate voltage. At this point the current increases stepwise because an additional 
transport channel opens up. In the stability diagram, it results in a horizontal line inside the 
Coulomb blockaded regime. This conductance feature appears symmetrically around zero at a 
source-drain bias of ±∆/e for an exited level that lies at an energy ∆ above the ground state. Co-
tunneling spectroscopy therefore offers a sensitive measure of excited state energies, which can 
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be electronic or vibrational. Often in combination with Kondo peaks, inelastic cotunnelling lines are 
commonly observed in semiconducting, nanotube and molecular quantum dots. In Figure 13a an 
example of inelastic co-tunnel lines (dashed horizontal lines) for a metallic nanotube quantum dot 
is shown. 

Figure 13b sketches the mechanism of inelastic co-tunneling. An occupied state lies below the 
Fermi level. It can only virtually escape from it for some small time governed by the Heisenberg 
uncertainty relation. If an electron from the left lead in the meantime tunnels onto the dot in the 
excited level (red), effectively one electron has been transported from left to right. The dot is left in 
an excited level and the energy difference  has to be paid by the bias voltage and this two-step 

process is thus only possible for 
exE
e/EV ex> . Relaxation inside the dot may put the dot in the 

ground state again.  
10 
11 

12 
13 
14 
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Table I 
 

 Ga As quantum dot Carbon nanotube* Molecular transistor 
EC 0.2 to 2 meV 3 meV >0.1 eV 
∆ 0.02 to 0.2 meV  3 meV >0.1 eV 
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* metallic nanotube; 500 nm in length 
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