Chapter 7: Stability of randomly placed rock mounds

ct5308 Breakwaters and Closure Dams

H.J. Verhagen

March 29, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

History

Iribarren
Hudson
Van der Meer
Van Gent

- * Equilibrium of forces on a block
- * Experiments and curve fitting
- * More experiments, analysis, curve fitting
- * Shallow water conditions

Equilibrium after Iribarren

$$F_{\text{wave}} = \rho_w g D_n^2 H$$
$$W - B = (\rho_r - \rho_w) g D_n^3$$
$$W = \rho_r g D_n^3$$

Equations for uprush and downrush

$$W \ge \frac{N\rho_r g H^3}{\Delta^3 \left(\mu \cos \alpha + \sin \alpha\right)^3} \quad W \ge \frac{N\rho_r g H^3}{\Delta^3 \left(\mu \cos \alpha - \sin \alpha\right)^3}$$

type of block	downwar ($\mu \cos \theta$	downward stability $(\mu \cos \alpha - \sin \alpha)^3$		stability $+ \sin \alpha$) ³	transition slope between upward and
	V	,	v	,	downward stability
	μ	N	μ	N	$\cot \alpha$
rough angular	2.38	0.430	2.38	0.849	3.64
quarry stone					
cubes	2.84	0.430	2.84	0.918	2.80
tetrapods	3.47	0.656	3.47	1.743	1.77

Hudson

$$W \ge \frac{\rho_r g H^3}{\Delta^3 K_D \cot \alpha}$$

		structur	e trunk	structur	re head
	number	K	-D	K	, D
type of block	of layers	breaking	non	breaking	non
	(N)	wave	breaking	wave	breaking
			wave		wave
rough angular quarry stone	1	**	2.9	**	2.3
rough angular quarry stone	2	3.5	4.0	2.5^{*}	2.8^{*}
rough angular quarry stone	3	3.9	4.5	3.7*	4. 2 [*]
tetrapod	2	7.2	8.3	5.5^{*}	6 .1 [*]
dolos	2	22.0	25.0	15.0	16.5^{*}
cube	2	6.8	7.8		5.0

som 1077			structure trunk		structure head	
spin 1911		number	K	r D	K	-D
	type of block	of layers	breaking	non	breaking	non
		(N)	wave	breaking	wave	breaking
				wave		wave
	rough angular quarry stone	1	**	2.9	**	2.3
	rough angular quarry stone	2	3.5	4.0	2.5*	2.8*
	rough angular quarry stone	3	3.9	4.5	3.7*	4.2*
	tetrapod	2	7.2	8.3	5.5^{*}	6.1*
	dolos	2	22.0	25.0	15.0	16.5 [*]
	cube	2	6.8	7.8		5.0
	rough angular quarry	1	**	2.9	**	2.2
spm 1984	stone					
	rough angular quarry	2	2.0	4.0	1.6*	2.8^{*}
	stone				- *	*
	rough angular quarry	3	2.2	4.5	2.1°	4.2
	stone				*	. *
	tetrapod	2	7.0	8.0	4.5	5.5
	dolos	2	15.8	31.8	8.0	16.0
	cube	2	6.5	7.5		5.0
	akmon	2	8	9	n.a.	n.a.
	Accropod (1:1.33)		12	15		
	* There is a sligh	t variation o	f recommend	ded K_D value	for different	slopes
	H _s ^{**} Use of sir	ngle layer is i	not recomme	nded under b	breaking wav	res

Damage multiplier for Hudson

Unit		Damage (D) in %					
	0-5	5-10	10-15	15-20	20-30	30-40	40-50
Quarry stone (smooth)	1.00	1.08	1.14	1.20	1.29	1.41	1.54
Quarry stone (rough)	1.00	1.08	1.19	1.27	1.37	1.47	1.56
Tetrapod	1.00	1.09	1.17	1.24	1.32	1.41	1.50
Dolos	1.00	1.10	1.14	1.17	1.20	1.24	1.27

Damage due to overloading (H/H_{no damage})

March 29, 2012

comparison of Hudson and Iribarren

$$\frac{H}{\Delta D} = \sqrt[3]{K_D \cot \alpha}$$
$$\frac{H}{\Delta D} = \left(\mu \cos \alpha \pm \sin \alpha\right) N^{-1}$$

- shape of block
- layer thickness
- placing manner
- roughness, interlock
- type of wave attack
- head/trunk
- angle of incidence
- size/porosity underlayer
- crest level
- crest type
- wave period
- foreshore shape
- reflection

application of Hudson

- increase of block density
- increase of block weight
- decrease slope
- grout smaller blocks
- increase K_D by special shaped blocks

$$\frac{H}{\Delta D} = \sqrt[3]{K_D \cot \alpha}$$

Optimal angle and interlock of blocks

ongoing MSc work by Bart van Zwicht

March 29, 2012

Hudson and measurements

March 29, 2012

Damage according to Van der Meer

- A erosion area
- D_{n50} nominal diameter (= $W_{50} / g\rho$)^{1/3}
- W₅₀ "mean" weight of the armour stones

Damage(S) based on erosion area (A)

classification of S-values

Slope	Initial Damage	Intermediate Damage	Failure
	(needs no repair)	(needs repair)	(core exposed)
1:1.5	2	3-5	8
1:2	2	4-6	8
1:3	2	6-9	12
1:4	3	8-12	17
1:6	3	8-12	17

wave period

significant wave deep water period based on T_m

March 29, 2012

Permeability coefficients

March 29, 2012

Van der Meer

$$\frac{H_{sc}}{\Delta d_{n50}} = 6.2 P^{0.18} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \xi^{-0.5} \qquad \text{(plunging breakers)}$$
$$\frac{H_{sc}}{\Delta d_{n50}} = 1.0 P^{-0.13} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \xi^{P} \sqrt{\cot \alpha} \qquad \text{(surging breakers)}$$

$$\xi_{\text{transition}} = \left[6.2 P^{0.31} \sqrt{\tan \alpha} \right]^{\left(\frac{1}{P+0.5}\right)}$$

$$\xi > \xi_{\text{transition}} \Rightarrow \text{ surging breakers}$$

$$\xi < \xi_{\text{transition}} \Rightarrow \text{ plunging breakers}$$

reference case

sign. wave height Hs slope of revetment cotα "Permeability" mean period T_m number of waves Ν rock size d_{n50} relative density S damage level Hudson coefficient K_{D}

2 m 3 P 0.5 6 s 3000 0.6 m (300-1000 kg) ∆ 1.65 2 2

Wave period

permeability

P = notional permeability factor

notional: belonging to the realm of ideas, not of experience; existing only in the mind (*denkbeeldig; begrips-*)

March 29, 2012

number of waves

maximum number of waves: 7500 3000 waves of 6 s is 5 hours

damage level

slope angle

damage development

March 29, 2012

mild slopes

measured values for plunging breakers

coefficients can be considered as stochastic parameters: $\sigma_{6.2} = 0.5$ $\sigma_{1.0} = 0.08$

Hudson and Van der Meer

March 29, 2012

shape of quarry stone

Rock shape	Plunging waves	Surging waves
Elongate/Tabular	6.59	1.28
Irregular	6.38	1.16
Equant	6.24	1.08
Standard v.d. Meer	6.2	1.0
Semi-round	6.10	1.00
Very round	5.75	0.80

coefficients in the Van der Meer equation

March 29, 2012

visual comparison of block shapes

Shallow water conditions (wave height)

- Rayleigh distribution no longer valid
 - in deep water $H_{2\%} = 1.4 H_s$
 - in shallow water $H_{2\%} = (1.2 1.3) H_s$
- So, use adapted design formula (you may use H_{2%} instead of H_s) ^{\$100%}

Shallow water conditions (wave period)

- When waves come in shallow water, wave spectrum changes
 - in shallow water longer periods are more relevant
 - recommended to use T_{m-1,0}

Stone stability (vdMeer vs. vGent)

March 29, 2012

The original van der Meer equation

$$\frac{S}{\sqrt{N}} = \left[\frac{1}{c_{pl}} \left(\frac{H_{2\%}}{H_s}\right) \frac{H_s}{\Delta D_{n50}} \xi_m P^{0.18}\right]^5$$

(for plunging breakers)

Values of the coefficient c_{pl} :Original Van der Meer:8.68Transformation to $T_{m-1,0}$:9.13Recalibration on data Van Gent:8.40

For deep water: $H_{2\%}/H_s = 1.4$

correct factor $H_{2\%}/H_s$

incorrect conversion from T_m to $T_{m-1,0}$

Van Gent: $T_m = 0.957 T_{m-1,0}$ Van der Meer: $T_m = 0.904 T_{m-1,0}$

1.4 used as fixed factor for ratio $H_{2\%}/H_s$

incorrect conversion from T_m to $T_{m-1,0}$

Van Gent: $T_m = 0.957 T_{m-1,0}$ Van der Meer: $T_m = 0.904 T_{m-1,0}$

Data of Van Gent, recalibrated formula Plunging waves

c_{pl} changed from 8.68 to 8.4

Data of Van Gent, recalibrated formula Surging waves

c_{su} changed from 1.4 to 1.3

March 29, 2012

Datasets of Van der Meer

- 309 tests
- slope of foreshore: horizontal (47 tests with 1:30)
- slope of structure: 1:1.5 to 1:6
- core: permeable and impermeable
- ratio H_s/d: 0.12 0.26 (deep water)

Datasets of Van Gent

core	# of tests	foreshore	slope	H _s /d
Permeable	37	1:100	1:2	0.34-0.51
Permeable	34	1:100	1:2	0.34-0.52
Permeable	31	1:100	1:4	0.31-0.51
Permeable	26	1:30	1:2	0.23-0.78
Permeable	24	1:30	1:4	0.34-0.73
Impermeable	34	1:30	1:2	0.15-0.48
Impermeable	21	1:30	1:2	0.27-0.53
VdMeer				

Vanieer				
Permeable &	309	mainly	1:2	0.12-0.26
impermeable		horizontal	to 1:6	

March 29, 2012

Observations

- In paper significant difference between results of Van Gent and of Van der Meer
- In paper Van Gent erroneously assumed a conversion factor of 0.957, while it had to be 0.904 (because Van der Meer did not use in his original test a standard spectrum)
- Largest part of the Van Gent data are different from the original deep water situation of Van der Meer; also the slope of the foreshore was different for most tests

Conclusions

- For the period one should use T_{m-1,0}
- In case of standard (deep water) spectrum one may use $T_m = 0.957 T_{m-1,0}$
- But be careful: the spectrum used in the tests of Van der Meer gave a conversion of $T_m = 0.904 T_{m-1,0}$
- The recalibration of Van Gent should not be applied for deep water
- For the time being the following coefficients are recommended:

	deep	shallow
C _{pl}	9.13	8.4
C _{su}	1.33-1.39	1.3

Comparison after all corrections

Marcel Mertens, 2007

March 29, 2012

$$\frac{S}{\sqrt{N}} = \left[\frac{1}{c_{pl}} \left(\frac{H_{2\%}}{H_s}\right) \frac{H_s}{\Delta D_{n50}} \xi_{m-1,0} P^{0.18}\right]^5$$

 $\xi_{m-1,0}$ is a function of H_s

March 29, 2012

General equations (deep & shallow)

$$\frac{H_{2\%}}{\Delta d_{n50}} = c_{pl} P^{0.18} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \left(s_{m-1,0}\right)^{0.25} \sqrt{\cot \alpha}$$

for plunging waves

 $\frac{H_{2\%}}{\Delta d_{n50}} = c_s P^{-0.13} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \left(s_{m-1,0}\right)^{-0.25} \left(\xi_{s-1,0}\right)^{P-0.5} \text{ for surging waves}$

$$\xi_{cr} = \left[\frac{c_{pl}}{c_s} P^{0.31} \sqrt{\tan \alpha}\right]^{\frac{1}{P+0.5}}$$
transition

A new formula by Van Gent

$$\frac{S}{\sqrt{N}} = \left(0.57 \frac{H_s}{\Delta D_{n50}} \sqrt{\tan \alpha} \frac{1}{1 + \frac{D_{n50core}}{D_{n50}}}\right)^5$$

Extra in this formula: D_{n50core} Not in this formula: P period or steepness

March 29, 2012

Results of the Van Gent formula

Reliability of the various equations

Equation	Structure type	σ
Modified vdM Modified vdM	permeable impermeable	0.098 0.133
Modified vdM	all	0.109
Van Gent Van Gent	permeable impermeable	0.103 0.121
Van Gent	all	0.109

March 29, 2012

Observations on the Van Gent formula

- Reliability of the Van Gent formula seems as good as the (recalibrated) Van der Meer formula
- Especially for permeable cores results are better
- But Period/Steepness is not included, and is considered as irrelevant
- Reliability is only based on the Van Gent database (shallow water, gentle foreshore)

Conclusions on the Van Gent Formula

- Because on deep water period is relevant (see dataset of Van der Meer) and because spectrum shape is also relevant (introduction of T_{m-1,0}) it is not advisable to exclude the period in stability formulas
- The parameter $\frac{1}{1+\frac{D_{n50core}}{D_{n50}}}$ is maybe a better parameter for describing the permeability of a structure than the P-value of Van der Meer, because P cannot be determined objectively

low crested dams (2)

low crested dams (3)

- Given formula are for the front side of the breakwater
- According to Van der Meer: in case of same block size at rear slope, no problems.
- But probably over-dimensioned.
- Tests performed in our lab to find out
 - split research into two steps
 - load of plunge on inner slope
 - dimension of plunge
 - try to understand stability process

The overtopping process

what happens during a plunge

March 29, 2012

Layer thickness as function of time

The u_{char} as describing parameter

For velocity use "characteristic velocity" The characteristic velocity is the maximum discharge divided by maximum layer thickness (and by flume width)

$$\Theta_{u_{char}//,R_{c},\alpha,i} = \frac{\left(u_{char}\cos(\beta-\alpha)\right)^{2}}{\Delta g D_{n50}} \frac{R_{c}}{D_{n50}}\sin(\alpha)\sqrt{i}$$

Overall results

toe stability

March 29, 2012

Example using toe piles

stability of toes

a: deep toes with small damage b: shallow toes

$$\frac{H_s}{\Delta d_{n50}} = 8.7 \left(\frac{h_t}{h_m}\right)^1$$

March 29, 2012

$$\frac{H_s}{\Delta d_{n50}} = 1.1 \left(0.24 \frac{h_t}{d_{n50}} + 1.6 \right)$$

typical damage pattern breakwater head

March 29, 2012

