Chapter 8: Dynamic Stability

ct5308 Breakwaters and Closure Dams

H.J. Verhagen

March 29, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

What is dynamic stability?

- Do not design on "damage"
- Try to make the breakwater in such a way that it gets a "stable" form
- Extra material is needed
- "Natural" dynamically stable breakwaters seem to exist on Iceland
- However, these breakwaters are <u>not</u> permeable

Types of berm breakwaters

- Statically stable non-reshaping structures
 In this condition only some few stones are allowed to move similar to a conventional rubble mound breakwater
- Statically stable reshaped structures
 In this condition the profile is allowed to reshape into a profile, which is stable and where the individual stones are also stable
- Dynamically stable reshaped structures
 In this condition the profile is reshaped into a stable profile, but the individual stones may move up and down the slope

Selection process for rubble mounds

- Is it economical to design an conventional rubble mound ? Can all quarried material be used ?
- If not all material can be used, and H_s < 2, use stable non-reshaping berm breakwater.
 If 2 < H_s < 3 m this might be a good option in case of dedicated quarry.
- If the stones are too small, use statically reshaped type
- If this also is not possible, use more stone and make dynamically stable berm breakwater

Types of berm breakwaters

Dynamically stable reshaped BB

- Two stone classes
- Homogeneous berm
- Wide stone gradation
- Low permeability
- Reshaping structures
- Allowed erosion < berm width
- More voluminous
- No interlocking

Statically stable non-reshaping BB

- Several stone classes
- Berm of size-graded layers
- Narrow stone gradation
- High permeability
- Non-reshaping structures
- Allowed recession $< 2^*D_{n50}$
- Less voluminous
- Interlocking prescribed

Berm breakwaters in the world

Country	Number of berm breakwaters	Year first breakwater was completed
Iceland	27	1984
Canada	5	1984
USA	4	1984
Australia	4	1986
Brazil	2	1990
Norway	4	1991
Denmark (Far Oer)	1	1992
Iran	8	1996
Portugal (Madeira)	1	1996
China (Hong Kong)	1	1999
Total	57	

Data from Pianc report on berm breakwaters 2003

March 29, 2012

schematised profile for sand and gravel beaches

March 29, 2012

Influence of wave climate on a berm breakwater profile

Berm breakwater Berlevåg (Norway)

Reshaped profile of Berlevåg breakwater

Reshaping calculations

- Van der Meer (1988 1990 Breakwat
- Van Gent (1995) Odiflocs
- Archetti and Lamberti (1996) (See Copedec Cape Town)
- new research by Tørum (1998, 2001)

March 29, 2012

Recession according to Tørum (1)

Special parameter for recession: H₀T₀

$$H_{o} = \frac{H_{s}}{\Delta D_{n50}}$$
$$T_{0} = T_{z} \sqrt{\frac{g}{D_{n50}}}$$

T_z is mean period

March 29, 2012

Recession according to Tørum (2)

 $\frac{Rec}{d_{n50}} = A(H_0T_0)^3 + B(H_0T_0)^2 + C(H_0T_0) - (-9.9f_g^2 + 23.9f_g - 10.5) - f_h$

- $A = 2.7 \Box 10^{-6}$
- $B = 9\Box 10^{-6}$
- *C* =0.11

gradation factor
$$f_g = d_{n85}/d_{n15}$$
 $1.3 < f_g < 1.8$
depth factor $f_h = -0.1 \left(\frac{h}{d_{n50}}\right) + 3.2$

March 29, 2012

Recession according to Tørum (3)

Place of the intersection of profiles:

 $\frac{h_f}{d_{50}} = 0.2 \frac{h}{d_{50}} + 0.5 \qquad for \ 12.5 < \frac{h}{d_{n50}} < 25$

March 29, 2012

Longshore transport of stone

- apply same type of formula as longshore sand transport
- to prevent excessive transport, apply

- for heads use a value of 3
- Curve fitted transport formula:

$$S(x) = 0.00005 \left(\frac{H_s}{\Delta D_{n50}} T_p \sqrt{\frac{g}{D_{n50}}} - 105 \right)^2$$

March 29, 2012

cross section of the Sirevåg breakwater

Stone class	W _{min} -W _{max} (tonnes)			
I	20-30			
11	10-20			
111	4-10			
IV	1-4			
€ 20.000/m (2000/2001)				
	16			

Design conditions

- 100 years return period H_s = 7.0 m, T_p=14.2 s (based on hindcast + refraction study)
- Storm of December 1998: H_s=7.0 m, T_p=14 s
- Storm of February 1999: H_s=6.7 m, T_p=15 s
- Storm of January 2002: H_s=9.3 m at deep water (450 m offshore) H_s=7.9, T_p=10 s

Damage to breakwater:8 stones removed, 6 stones moved

March 29, 2012

Prototype and model

March 29, 2012

Stone classes and Quarry yield Sirevåg

Stone Class	W _{min} -W _{max}	W _{mean}	W _{max} /W _{min}	d _{mx} /d _{min}	Expected quarry yield
I	20-30	23.3	1.5	1.114	5.6%
II	10-20	13.3	2.0	1.26	9.9%
- 111	4-10	6.0	2.5	1.36	13.7%
IV	1-4	2.0	4.0	1.59	19.3%

Sirevåg yield cure

March 29, 2012

Sirevåg breakwater

March 29, 2012

Sirevåg breakwater

March 29, 2012

Sirevåg breakwater

March 29, 2012

