## Chapter 11: Design practice for breakwater cross sections

ct5308 Breakwaters and Closure Dams

H.J. Verhagen

March 29, 2012



Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

**Delft University of Technology** 

#### Given a quarry:

- Split the rock in three categories
  - filter
  - core
  - armour

you make a berm breakwater

• Split the rock in many categories you may define more layers



### permeability/porosity

## volumetric porosity: $n_v = 1 - \left(\frac{\rho_b}{\rho_r}\right)$

| Type and shape of units | Layer<br>thickness<br><i>n</i> | Placement | Layer<br>coefficient<br><i>k</i> t | Porosity<br><i>n</i> <sub>v</sub> | Source    |
|-------------------------|--------------------------------|-----------|------------------------------------|-----------------------------------|-----------|
| Smooth quarry stone     | 2                              | Random    | 1.02                               | 0.38                              | SPM       |
| Very round quarry stone |                                | Random    | 0.80                               | 0.36                              | Cur/Ciria |
| Very round quarry stone |                                | Special   | 1.05 – 1.20                        | 0.35                              | Cur/Ciria |
| Semi-round quarry       |                                | Random    | 0.75                               | 0.37                              | Cur/Ciria |
| Semi-round quarry stone |                                | Special   | 1.10 – 1.25                        | 0.36                              | Cur/Ciria |
| Rough quarry stone      | 2                              | Random    | 1.00                               | 0.37                              | SPM       |
| Rough quarry stone      | > 3                            | Random    | 1.00                               | 0.40                              | SPM       |
| Irregular quarry stone  |                                | Random    | 0.75                               | 0.40                              | Cur/Ciria |
| Irregular quarry stone  |                                | Special   | 1.05 – 1.20                        | 0.39                              | Cur/Ciria |
| Graded quarry stone     |                                | Random    |                                    | 0.37                              | SPM       |
| Cubes                   | 2                              | Random    | 1.10                               | 0.47                              | SPM       |
| Tetrapods               | 2                              | Random    | 1.04                               | 0.50                              | SPM       |
| Dolosse                 | 2                              | Random    | 0.94                               | 0.56                              | SPM       |
| Accropode               | 1                              | Special   | 1.3                                | 0.52                              | Sogreah   |
| Akmon                   | 2                              | Random    | 0.94                               | 0.50                              | ŴL        |



#### layer thickness

$$t = n k_t D_{n50}$$

#### number of elements

$$N = n k_t A (1 - n_v) D_{n50}^{-2}$$

(A is a given area)

March 29, 2012



4

## layer thickness tests





Carlos Bosma, nov 2001



### measuring the top of the layer



Carlos Bosma, nov 2001



#### measuring the top







 $\begin{array}{ll} {\sf F1} & = 0.275 \; {\sf D}_{\sf n} \\ {\sf F3} & = 0.740 \; {\sf D}_{\sf n} \\ {\sf F3a} \; ({\sf sphere}) = 0.462 \; {\sf D}_{\sf n} \\ {\sf F3a} \; ({\sf pin}) & = 0.667 \; {\sf D}_{\sf n} \end{array}$ 

Volumetric layer thickness:  $F2 + 0.14 D_n + 0.37 D_n =$  $F2 + 0.51 D_n$ 

Measured layer thickness:  $0.275D_n + F2 + 0.278D_n =$  $F2 + 0.553 D_n$ 

Difference: 0.043 D<sub>n</sub>

Carlos Bosma, nov 2001



| Heavy aggregates                                             | Normal concrete | Heavy density concrete |  |
|--------------------------------------------------------------|-----------------|------------------------|--|
| Density in air (t/m <sup>3</sup> )                           | 2.4             | 4.0                    |  |
| Density in water(t/m <sup>3</sup> )                          | 1.4             | 3.0                    |  |
| 10 tonnes in water (m <sup>3</sup> )                         | 7.14            | 3.33                   |  |
| In air this corresponds to (tonnes)                          | 17.14           | 13.32                  |  |
| Volume decrease when using Heavy density concrete            | 55%             |                        |  |
| Decrease of weight in air                                    | 22%             |                        |  |
| @325 kg/m <sup>3</sup> – total cement required for 10 tonnes | 3220            | 1082                   |  |
| Decrease in cement consumption for 10 tonnes of weight       | 1238            | 1082                   |  |
| Decrease in cement consumption in %                          | 55%             |                        |  |
| March 29, 2012                                               |                 | 9                      |  |



# Sines breakwater (110 ton Antifer blocks)



March 29, 2012



10

#### breakwater and berms





#### definition sketch of cross section



high or low crest crest design rock or concrete armour tolerances armour layer crest first under layer toe berm core filter





#### overtopping

light overtopping (with cap)

#### light overtopping

#### moderate overtopping

moderate overtopping (with cap)

#### severe overtopping

#### various toe solutions





#### dredged trench, geotextile

#### classic solution

#### dredged trench, gravel



March 29, 2012

## no excavation, geotextile and increased berm



**T**UDelft



## monolithic breakwater

New PIANC guidelines available



