Chapter 12: design practice for closure dams

ct5308 Breakwaters and Closure Dams
H.J. Verhagen

March 28, 2012

Design practice

Local hydraulic
boundary conditions

very basic equations (the "model") for the Stone Closure

$$
\frac{u^{2}}{\Delta d_{n}}=C^{2} \Psi \quad A=\frac{K^{2}}{\Psi C^{2}}
$$

$$
C=18 \log \left(\frac{6 h}{d_{n}}\right)
$$

$$
\Delta d_{n}=A u^{2}
$$

results of the re-analysis

$$
\begin{gathered}
\Delta d_{n}=A u^{2} \\
A=\frac{K^{2}}{\Psi C^{2}}
\end{gathered}
$$

Example: channel, 4000 m wide, storage area 200 km², channel depth 17.5 m , tidal amplitude 2.5 m Determine velocities and stone sizes, using simple equation

Point	Horizontal ($\mathrm{d}^{\prime}=17.5$)			Vertical				Combined			
	\%clos e	u_{0}	$\begin{aligned} & \mathrm{d}_{\mathrm{n} 50} \\ & \mathrm{~cm} \end{aligned}$	\%close	$\begin{aligned} & d^{\prime} \\ & \text { m } \end{aligned}$	u_{0} m / s	$\begin{aligned} & \mathrm{d}_{\mathrm{n} 50} \\ & \mathrm{~cm} \end{aligned}$	\%close	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{u}_{0} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{n} 50} \\ & \mathrm{~cm} \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \% \\ & 70 \% \\ & 80 \% \\ & 87 \% \\ & 93 \% \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.1 \\ & 4.4 \\ & 5.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & <1 \\ & 5 \\ & 13 \\ & 27 \\ & 44 \end{aligned}$	$\begin{aligned} & 0 \% \\ & 25 \% \\ & 50 \% \\ & 75 \% \\ & 80 \% \\ & 90 \% \end{aligned}$	$\begin{aligned} & 17 . \\ & 5 \\ & 12 . \\ & 5 \\ & 7.5 \\ & 2.5 \\ & 1.5 \\ & - \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 2.5 \\ & 5.3 \\ & 5.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & <1 \\ & 1 \\ & 3 \\ & 73 \\ & 53 \\ & 20 \end{aligned}$	$\begin{aligned} & 0 \% \\ & 70 \% \\ & 77 \% \\ & 85 \% \\ & 92 \% \\ & 94 \% \\ & 97 \% \end{aligned}$	$\begin{aligned} & 17 . \\ & 5 \\ & 17 . \\ & 5 \\ & 12 . \\ & 5 \\ & 7.5 \\ & 2.5 \\ & 1.5 \\ & - \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.1 \\ & 3.8 \\ & 5.7 \\ & 5.7 \\ & 4.7 \\ & 3.3 \end{aligned}$	$\begin{aligned} & <1 \\ & 5 \\ & 13 \\ & 50 \\ & 80 \\ & 53 \\ & 20 \end{aligned}$

strategy	requir
vertical	0.7
combined	0.98
horizontal	0.5

Jamuna

TUDelft

the feni-dam

March 28, 2012

Closure of the Pluijmpot

March 28, 2012
10

TUDelft

rock closure

March 28, 2012
TUDelft

cable car - vertical closure

TUDelft

vertical closure, smooth current pattern

caissons

principle of a caisson

TUDelft

some examples (1)

some examples (2)

TUDelft

cross section (1)

TUDelft

cross section
 (2)

some examples (3)

TUDelft

some examples (4)

TUDelft

some examples (5)

Caisson closure

time before velocity slack water above sill

- sailing in the caisson
- positioning caisson above sill
- connect caisson to already placed ones
- sinking down of caisson
- caisson on sill
- moment of slack water
- removal of wooden floating planks
- dumping of extra stone for ballast
-70 min
-55 min
$-30 \mathrm{~min} \quad<0.75 \mathrm{~m} / \mathrm{s}$
$-15 \mathrm{~min} \quad<0.30 \mathrm{~m} / \mathrm{s}$
- 5 min

0 min

caisson placing procedure

window for caisson closure (1)

window for caisson closure (2)

sand closure

TUD ${ }^{\pi}$ Ift

production vs. loss

equipment and borrow area

TUDelft

TUDelft

dredges needed

number of dredges crest width of the dam
1
2
3
4
less than 40 m
40-55m
65-75m
75-100 m

slopes

under water 1:15-1:30
intertidal area 1:50-1:100

loss calculation

$$
\begin{aligned}
& \Psi=u^{2} / C^{2} \Delta d_{50} \\
& C=18 \log \left(12 h / k_{s}\right) \\
& \Phi=s / \sqrt{g \Delta d_{50}^{3}} \\
& \Delta=\frac{\rho_{s}-\rho_{w}}{\rho_{w}} \\
& \Phi \frac{g}{C^{2}}=a \Psi^{b}
\end{aligned}
$$

k_{s} roughness (0.1)
H waterdepth
$\mathrm{b}=1.75-2.5$

loss calculation (2)

$$
\begin{gathered}
L^{1}=\frac{s}{1-n}=\frac{a^{*} C^{2} \sqrt{\Delta D_{50}^{3}}}{(1-n) \sqrt{g}} \Psi^{b}
\end{gathered} \left\lvert\, \begin{aligned}
& L_{m}^{1}=\frac{0.06 u^{5}}{C^{3} d_{50}^{2}(1-n) \sqrt{g}} \\
& L_{V}^{1}=\frac{0.35 u^{3.5}}{C^{1.5} d_{50}^{1 / 4} \Delta^{1.25}(1-n) \sqrt{g}} \\
& L=\frac{1}{T} \int_{0}^{T}\left\{\int_{0}^{1 b} L_{m}^{1} * d y+0.3 D_{i}^{*} L_{V i}^{1}+0.3 D_{D_{i i}}^{*} L_{V i i}^{1}\right\} d t
\end{aligned}\right.
$$

loss calculation (3)

a more complicated example

- foreshore, 250 m wide, 0.5 m below msl
- gully of 200 m wide, depth of 4 m below ms
- tidal flat 300 m wide, at msl
- main gully, 250 m wide, 6.5 m below msl
- profile $4000 \mathrm{~m}^{2}$ at high water and $1800 \mathrm{~m}^{2}$ at low water
- tidal range $2 x$ tidal amplitude) is 3 m
- storage area is $20 \mathrm{~km}^{2}$ at high water and $5 \mathrm{~km}^{2}$ at low water
- flow analysis is done with Duflow

original state, phase 0

Blocking the shallows first

phase	action	foreshore	sec. gully	tidal flat	main gully
0	original state	$250 \mathrm{~m} ;-0.5$	$200 \mathrm{~m} ;-4$	$300 \mathrm{~m} ;$	$250 \mathrm{~m} ;-6.5$
			msl		
1	bottom protection + shallows	dammed	$200 \mathrm{~m} ;-3.5$	dammed	$250 \mathrm{~m} ;-6$
2	partial sills in both gaps	dammed	$200 \mathrm{~m} ;-3$	dammed	$250 \mathrm{~m} ;-4.5$
3	final sill, abutments	dammed	$200 \mathrm{~m} ;-2.5$	dammed	$190 \mathrm{~m} ;-4.5$
4	first caisson in place	dammed	$200 \mathrm{~m} ;-2.5$	dammed	$128 \mathrm{~m} ;-4.5$
5	sec. caisson in place	dammed	$200 \mathrm{~m} ;-2.5$	dammed	$66 \mathrm{~m} ;-4.5$
6	third caisson in place	dammed	$200 \mathrm{~m} ;-2.5$	dammed	closed
7	narrowing on sec. sill	dammed	$100 \mathrm{~m} ;-2.5$	dammed	closed
8	further narrowing	dammed	$50 \mathrm{~m} ;-2.5$	dammed	closed
9	last gap	dammed	$10 \mathrm{~m} ;-2.5$	dammed	closed

original state, phase 2

Check on velocities

U in m / s Q in $\mathrm{m}^{3} / \mathrm{s}$		secondary gap				main gap			
		during ebb		during flood		during ebb		during flood	
phase	situation	$\mathrm{U}_{\text {max }}$	$\mathrm{Q}_{\text {max }}$						
0	original	1.09	915	1.07	940	1.09	1810	1.07	1825
1	bp+dams	1.33	1010	1.27	1045	1.33	2070	1.27	2085
2	sills	1.67	1065	1.57	1135	1.67	1935	1.57	1995
3	abutment	2.12	1090	1.94	1215	2.12	1790	1.94	1865
4	1 placed	2.71	1305	2.39	1505	2.57	1385	2.26	1470
5	2 placed	3.57	1550	3.00	1875	3.19	820	2.69	895

$\mathrm{U}_{\text {max }}$ becomes too high for closed caissons

closing steps using sluice caissons

phase	action	foreshore	sec. gully	tidal flat	main gully	sluice gate
4	first placed, opened	dammed	$200 \mathrm{~m} ;-2.5$	dammed	$128 \mathrm{~m} ;-4.5$	$56 \mathrm{~m} ;-3.5$
5	sec. placed, opened	dammed	$200 \mathrm{~m} ;-2.5$	dammed	$66 \mathrm{~m} ;-4.5$	$112 \mathrm{~m} ;-3.5$
6	third caisson placed	dammed	$200 \mathrm{~m} ;-2.5$	dammed	0 m	$112 \mathrm{~m} ;-3.5$
7	narrowing on sill	dammed	$100 \mathrm{~m} ;-2.5$	dammed	0 m	$112 \mathrm{~m} ;-3.5$
8	further narrowing	dammed	$50 \mathrm{~m} ;-2.5$	dammed	0 m	$112 \mathrm{~m} ;-3.5$
9	last gap in sec.	dammed	$10 \mathrm{~m} ;-2.5$	dammed	0 m	$112 \mathrm{~m} ;-3.5$
10	close sluice gates	dammed	dammed	dammed	0 m	closed

shallows first, phase 4

velocities with sluice caissons (velocities in the caissons)

U in m/s Q in $\mathrm{m}^{3} / \mathrm{s}$		secondary gap				main gap **			
		during ebb		during flood		during ebb		during flood	
phase	situation	$\mathrm{U}_{\text {max }}$	$\mathrm{Q}_{\text {max }}$						
5	1+2 open	2.60	1260	2.30	1445	2.32	1460	2.06	1580
6	3 placed	3.35	1480	2.85	1775	2.82	965	2.40	1095
7	100m gap	3.87*	830	3.40	1040	3.67	1155	3.03	1360
8	50 mgap	3.78*	410	3.57	535	3.95*	1220	3.36	1485
9	10 mgap	3.62*	80	3.58	105	4.05*	1245	3.58	1560

* means critical flow ** via the sluice gates

shallows first, phase 7

option: shallows first
phase: 7

velocities in case of three sluice caissons

U in m/s Q in $\mathrm{m}^{3} / \mathrm{s}$		secondary gap				main gap **			
		during ebb		during flood		during ebb		during flood	
phase	situation	$\mathrm{U}_{\text {max }}$	$\mathrm{Q}_{\text {max }}$						
7	100m gap	3.35*	720	2.80	875	3.14	1570	2.63	1805
8	50 mgap	3.55*	385	3.09	480	3.51	1695	2.91	1980
9	10 mgap	3.49*	80	3.15	100	3.81*	1780	3.15	2120

Blocking the main channel first

- raise sills in both channels somewhat (to the maximum allowed)
- place caissons in main channel
- close secondary channel and tidal flats by dumping rock
- keep a small gully open

main channel first, phase 4

sequence of closing (main channel first)

phase	action	foreshore	sec. gully	tidal flat	island	main gully
0	original state	250m; -0.5	200m; -4	$300 \mathrm{~m} ;$ MSL	none	$250 \mathrm{~m} ;-6.5$
1	bottom prot. + island	250m; MSL	$200 \mathrm{~m} ;-3.5$	$250 \mathrm{~m} ;+0.5$	125 m	$175 \mathrm{~m} ;-6$
2	sills in both gaps	250m; MSL	$200 \mathrm{~m} ;-3$	$250 \mathrm{~m} ;+0.5$	125 m	$175 \mathrm{~m} ;-4.5$
3	sill, abutments	250m; MSL	$200 \mathrm{~m} ;-3$	$250 \mathrm{~m} ;+0.5$	150 m	$125 \mathrm{~m} ;-4.5$
4	first caisson placed	250m; MSL	$200 \mathrm{~m} ;-3$	$250 \mathrm{~m} ;+0.5$	150 m	$65 \mathrm{~m} ;-.5$
5	sec. caisson placed	250m; MSL	$200 \mathrm{~m} ;-3$	$250 \mathrm{~m} ;+0.5$	-	closed

velocities (main channel first)

U in m/s Q in $\mathrm{m}^{3} / \mathrm{s}$		secondary gap **				main gap			
		during ebb		during flood		during ebb		during flood	
phase	situation	$\mathrm{U}_{\text {max }}$	$\mathrm{Q}_{\text {max }}$						
0	original	1.09	915	1.07	940	1.09	1810	1.07	1825
1	bott. prot. + island	1.61	1155	1.52	1215	1.61	1695	1.52	1720
2	sills	2.01	1175	1.85	1295	2.01	1525	1.85	1600
3	abutment	2.42	1355	2.19	1525	2.29	1205	2.07	1285
4	after 1st	3.06	1585	2.68	1860	2.73	705	2.40	770
5	after 2nd	3.98*	1860	3.37	2310	closed	0	closed	0

** the central 200 m section only (the shallows falling dry during low tide).

main channel first, phase 9

main channel first, water levels in

 basin

closing steps secondary gully

phase	action	foreshore		sec. gully		tidal flat
6	first layer	250m; MSL	97m; -2	6m;-2	97m; -2	250m; +0.5
7	first layer	250m; MSL	97m; -1	$6 \mathrm{~m} ;-2$	97m; -1	250m; +0.5
8	level foreshore	250m; MSL	97m; MSL	$6 \mathrm{~m} ;-1$	97m; MSL	250m; +0.5
9	level tidal flat	222m; +0.5	6m; MSL		222m; +0.5	250m; +0.5
10	level + 1	$347 \mathrm{~m}+1$		6m; +0.5		347m; +1
11	final layer	dammed		6m; +1		dammed

flow velocities in several stages

$\mathrm{U}_{\text {max }}$ in m/s		deepest part			deepest but one		deepest but two		deepest but three	
phase	situation	ebb	flood	ebb	flood	ebb	flood	ebb	flood	
5	after 2nd	3.98^{*}	3.37	2.34^{*}	2.85^{*}	1.80^{*}	2.50^{*}			
6	up to -2	4.22^{*}	3.43	3.81^{*}	3.84	2.28^{*}	3.03^{*}	1.94^{*}	2.32^{*}	
7	up to -1	3.82^{*}	3.38	3.8^{*}	2.68^{*}	2.38^{*}	3.15^{*}	2.02^{*}	2.32^{*}	
8	up to MSL	3.27^{*}	2.92	2.50^{*}	2.9^{*}	2.06^{*}	2.32^{*}	not applicable		
9	up to 0.5	2.32^{*}	2.67	1.98^{*}	2.32^{*}	not applicable				
10	up to + 1	1.86^{*}	2.18^{*}	1.05^{*}	1.55^{*}					
11	up to HW	0.88^{*}	1.55^{*}	high water free						

* means limited by critical flow condition.

pure vertical closure (both channels simultaneously)

- raising the level simultaneously in all channels

full length vertically, phase: all

option: full length vertically phase: all

steps in the vertical closure

phase	action	foreshore	sec. gully	tidal flat	main gully
0	original state	$250 \mathrm{~m} ;-0.5$	$200 \mathrm{~m} ;-4$	$300 \mathrm{~m} ;$ MSL	$250 \mathrm{~m} ;-6.5$
1	bottom prot. + sill (-3.5)	$250 \mathrm{~m} ; \mathrm{MSL}$	$200 \mathrm{~m} ;-3.5$	$300 \mathrm{~m} ;+0.5$	$250 \mathrm{~m} ;-3.5$
2	sills dumped (-3)	$250 \mathrm{~m} ; \mathrm{MSL}$	$200 \mathrm{~m} ;-3$	$300 \mathrm{~m} ;+0.5$	$250 \mathrm{~m} ;-3$
3	sills dumped (-2.5)	$250 \mathrm{~m} ; \mathrm{MSL}$	$200 \mathrm{~m} ;-2.5$	$300 \mathrm{~m} ;+0.5$	$250 \mathrm{~m} ;-2.5$
4	sill by trucks (-1)	$250 \mathrm{~m} ; \mathrm{MSL}$	$200 \mathrm{~m} ;-1$	$300 \mathrm{~m} ;+0.5$	$245 \mathrm{~m} ;-1$
5	up to MSL	$445 \mathrm{~m} ; \mathrm{MSL}$	$5 \mathrm{~m} ;-1$	$300 \mathrm{~m} ;+0.5$	$250 \mathrm{~m} ; \mathrm{MSL}$
6	up to +0.5	$445 \mathrm{~m} ;+0.5$	$5 \mathrm{~m} ; \mathrm{MSL}$	$300 \mathrm{~m} ;+0.5$	$250 \mathrm{~m} ;+0.5$
7	up to +1	$445 \mathrm{~m} ;+1$	$5 \mathrm{~m} ;+0.5$	$300 \mathrm{~m} ;+1$	$250 \mathrm{~m} ;+1$
8	up to HW	$445 \mathrm{~m} ;+1.5$	$5 \mathrm{~m} ;+1$	$300 \mathrm{~m} ;+1.5$	$250 \mathrm{~m} ;+1.5$

velocities in the vertical closure (phase 1-4)

U in m/s Q in $\mathrm{m}^{3} / \mathrm{s}$		secondary gap				main gap			
		during ebb		during flood		during ebb		during flood	
phase	action	$\mathrm{U}_{\text {max }}$	$\mathrm{Q}_{\text {max }}$						
0	original	1.09	915	1.07	940	1.09	1810	1.07	1825
1	protect. + sill	1.78	1230	1.66	1310	1.78	1535	1.66	1635
2	sills -3	2.06	1180	1.90	1310	2.06	1475	1.90	1635
3	sills -2.5	2.48	1110	2.23	1305	2.48	1385	2.23	1630
4	sill -1	2.99*	710	3.49*	1135	2.99*	870	3.49*	1390

full length vertically, phase 4

velocities in the vertical closure (phase 1-4)

$\mathrm{U}_{\max }$ in m/s		deepest part		deepest but one		deepest but two		deepest but three	
phase	situation	ebb	flood	ebb	flood	ebb	flood	ebb	flood
4	sill -1	3.62^{*}	3.09	2.99^{*}	3.49^{*}	2.24^{*}	2.74^{*}	1.68^{*}	2.27^{*}
5	up to MSL	2.97^{*}	2.87	2.33^{*}	3.05^{*}	1.98^{*}	2.32^{*}	not applicable	
6	up to 0.5	2.32^{*}	2.64^{*}	1.95^{*}	2.41^{*}	not applicable			
7	up to +1	1.90^{*}	2.05	1.11^{*}	1.55^{*}				
8	up to HW	0.88^{*}	1.55^{*}	high water free					

full length, phase 3 to 4 and 4 to 5

uplift of impermeable bed protection

