Chapter 12: design practice for closure dams

ct5308 Breakwaters and Closure Dams

H.J. Verhagen

March 28, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

Design practice

very basic equations (the "model") for the Stone Closure

results of the re-analysis

 $\Delta d_n = A u^2$

Example: channel, 4000 m wide, storage area 200 km², channel depth 17.5 m, tidal amplitude 2.5 m Determine velocities and stone sizes, using simple equation

Point	Horizont	al (d'=1	7.5)	Vertical	Vertical			Combined			
	%clos e	u _o	d _{n50} cm	%close	d' m	u _o m/s	d _{n50} cm	%close	d m	u _o m/s	d _{n50} cm
0 1 2 3 4 5 6	0 % 70 % 80 % 87 % 93 %	1.0 3.1 4.4 5.7 6.8	<1 5 13 27 44	0 % 25 % 50 % 75 % 80 % 90 %	17. 5 12. 5 7.5 2.5 1.5 - 0.5	1.0 1.4 2.5 5.3 5.0 3.6	<1 1 3 73 53 20	0 % 70 % 77 % 85 % 92 % 94 % 97 %	17. 5 17. 5 12. 5 7.5 2.5 1.5 - 0.5	1.0 3.1 3.8 5.7 5.7 4.7 3.3	<1 5 13 50 80 53 20

Jamuna

the feni-dam

Closure of the Pluijmpot

S Maartenselvk

Westkerke

Patrien de Harrel

March 28, 2012

Gonshoek

Presiding Sorting Palitar

rock closure

March 28, 2012

cable car - vertical closure

March 28, 2012

vertical closure, smooth current pattern

March 28, 2012

caissons

principle of a caisson

some examples (1)

March 28, 2012

some examples (2)

March 28, 2012

cross section (1)

cross section (2)

some examples (3)

March 28, 2012

some examples (4)

some examples (5)

March 28, 2012

Ca

ore velocity ter above sill
< 0.75 m/s
< 0.30 m/s
+10 min
+60 min

caisson placing procedure

window for caisson closure (1)

March 28, 2012

window for caisson closure (2)

March 28, 2012

sand closure

March 28, 2012

production vs. loss

equipment and borrow area

March 28, 2012

″ UDelft

dredges needed

number of dredges crest width of the dam 1 less than 40 m 2 40 - 55 m 3 65 - 75 m 4 75 - 100 m

March 28, 2012

slopes

under water intertidal area 1:50 - 1:100

1:15 - 1: 30

loss calculation $\Psi = u^2 / C^2 \Delta d_{50}$ $C = 18\log(12h/k_s)$ $\Phi = s / \sqrt{g \Delta d_{50}^3}$ $\Delta = \frac{\rho_s - \rho_w}{\rho_w}$

$$\Phi \frac{g}{C^2} = a \Psi^b$$

March 28, 2012

k_s roughness (0.1) H waterdepth

b = 1.75 - 2.5

loss calculation (2)

$$L^{I} = \frac{s}{1 - n} = \frac{a * C^{2} \sqrt{\Delta D_{50}^{3}}}{(1 - n)\sqrt{g}} \Psi^{b}$$

$$L_m^{1} = \frac{0.06u^5}{C^3 d_{50} \Delta^2 (1-n) \sqrt{g}}$$
$$L_v^{1} = \frac{0.35u^{3.5}}{C^{1.5} d_{50}^{1/4} \Delta^{1.25} (1-n) \sqrt{g}}$$

$$L = \frac{1}{T} \int_{0}^{T} \left\{ \int_{0}^{l_{b}} L_{m}^{1} * dy + 0.3_{D_{i}} * L_{V_{i}}^{1} + 0.3_{D_{ii}} * L_{V_{ii}}^{1} \right\} dt$$

loss calculation (3)

March 28, 2012

a more complicated example

- foreshore, 250 m wide, 0.5 m below msl
- gully of 200 m wide, depth of 4 m below msl
- tidal flat 300 m wide, at msl
- main gully, 250 m wide, 6.5 m below msl
- profile 4000 m² at high water and 1800 m² at low water
- tidal range 2x tidal amplitude) is 3 m
- storage area is 20 km² at high water and 5 km² at low water
- flow analysis is done with Duflow

original state, phase 0

Blocking the shallows first

phase	action	foreshore	sec. gully	tidal flat	main gully
0	original state	250 m; -0.5	200m; -4	300m;	250m; -6.5
				msl	
1	bottom protection + shallows	dammed	200m; -3.5	dammed	250m; -6
2	partial sills in both gaps	dammed	200m; -3	dammed	250m; -4.5
3	final sill, abutments	dammed	200m; -2.5	dammed	190m; -4.5
4	first caisson in place	dammed	200m; -2.5	dammed	128m; -4.5
5	sec. caisson in place	dammed	200m; -2.5	dammed	66m; -4.5
б	third caisson in place	dammed	200m; -2.5	dammed	closed
7	narrowing on sec. sill	dammed	100m; -2.5	dammed	closed
8	further narrowing	dammed	50m; -2.5	dammed	closed
9	last gap	dammed	10m; -2.5	dammed	closed

original state, phase 2

Check on velocities

U in m/s			second	ary gap		main gap				
Q in m^3/s		during ebb		during flood		durin	g ebb	during flood		
phase	situation	U _{max}	Q _{max}							
0	original	1.09	915	1.07	940	1.09	1810	1.07	1825	
1	bp+dams	1.33	1010	1.27	1045	1.33	2070	1.27	2085	
2	sills	1.67	1065	1.57	1135	1.67	1935	1.57	1995	
3	abutment	2.12	1090	1.94	1215	2.12	1790	1.94	1865	
4	1 placed	2.71	1305	2.39	1505	2.57	1385	2.26	1470	
5	2 placed	3.57	1550	3.00	1875	3.19	820	2.69	895	

U_{max} becomes too high for closed caissons

March 28, 2012

closing steps using sluice caissons

phase	action	foreshore	sec. gully	tidal flat	main gully	sluice gate
4	first placed, opened	dammed	200m; -2.5	dammed	128m; -4.5	56m; -3.5
5	sec. placed, opened	dammed	200m; -2.5	dammed	66m; -4.5	112m; -3.5
б	third caisson placed	dammed	200m; -2.5	dammed	0m	112m; -3.5
7	narrowing on sill	dammed	100m; -2.5	dammed	0m	112m; -3.5
8	further narrowing	dammed	50m; -2.5	dammed	0m	112m; -3.5
9	last gap in sec.	dammed	10m; -2.5	dammed	0m	112m; -3.5
10	close sluice gates	dammed	dammed	dammed	0m	closed

shallows first, phase 4

velocities with sluice caissons (velocities in the caissons)

U in m/s		secondary gap				main gap **				
Q in m^3/s		during ebb		during flood		during ebb		during flood		
phase	situation	U _{max}	Q _{max}							
5	1+2 open	2.60	1260	2.30	1445	2.32	1460	2.06	1580	
6	3 placed	3.35	1480	2.85	1775	2.82	965	2.40	1095	
7	100m gap	3.87*	830	3.40	1040	3.67	1155	3.03	1360	
8	50 m gap	3.78*	410	3.57	535	3.95*	1220	3.36	1485	
9	10 m gap	3.62*	80	3.58	105	4.05*	1245	3.58	1560	

* means critical flow ** via the sluice gates

shallows first, phase 7

velocities in case of three sluice caissons

U in m/s		secondary gap				main gap **				
Q in m^3/s		during ebb		during flood		during ebb		during flood		
phase	situation	U _{max}	Q _{max}							
7	100m gap	3.35*	720	2.80	875	3.14	1570	2.63	1805	
8	50 m gap	3.55*	385	3.09	480	3.51	1695	2.91	1980	
9	10 m gap	3.49*	80	3.15	100	3.81*	1780	3.15	2120	

Blocking the main channel first

- raise sills in both channels somewhat (to the maximum allowed)
- place caissons in main channel
- close secondary channel and tidal flats by dumping rock
- keep a small gully open

main channel first, phase 4

sequence of closing (main channel first)

phase	action	foreshore	sec. gully	tidal flat	island	main gully
0	original state	250m; -0.5	200m; –4	300m; MSL	none	250m; –6.5
1	bottom prot. + island	250m; MSL	200m; –3.5	250m; +0.5	125m	175m; –6
2	sills in both gaps	250m; MSL	200m; –3	250m; +0.5	125m	175m; –4.5
3	sill, abutments	250m; MSL	200m; –3	250m; +0.5	150m	125m; –4.5
4	first caisson placed	250m; MSL	200m; –3	250m; +0.5	150m	65m; —.5
5	sec. caisson placed	250m; MSL	200m; –3	250m; +0.5	-	closed

velocities (main channel first)

U in m/s			secondar	y gap **		main gap			
	Q in m^3/s	during ebb		during flood		during ebb		during flood	
phase	situation	U _{max}	Q _{max}						
0	original	1.09	915	1.07	940	1.09	1810	1.07	1825
1	bott. prot. + island	1.61	1155	1.52	1215	1.61	1695	1.52	1720
2	sills	2.01	1175	1.85	1295	2.01	1525	1.85	1600
3	abutment	2.42	1355	2.19	1525	2.29	1205	2.07	1285
4	after 1st	3.06	1585	2.68	1860	2.73	705	2.40	770
5	after 2nd	3.98*	1860	3.37	2310	closed	0	closed	0

** the central 200 m section only (the shallows falling dry during low tide).

main channel first, phase 9

main channel first, water levels in basin

closing steps secondary gully

phase	action	foreshore		sec. gully		tidal flat
6	first layer	250m; MSL	97m; -2	6m;-2	97m;	-2 250m; +0.5
7	first layer	250m; MSL	97m; -1	6m; -2	97m;	-1 250m; +0.5
8	level foreshore	250m; MSL	97m; MSL	6т; -1	97m; N	ASL 250m; +0.5
9	level tidal flat	222m; +0.5	бт; MSL	1	222m; +0.	5 250m; +0.5
10	level + 1	347m+1		6m; +0.5		347m; +1
11	final layer	dammed		6m; +1		dammed

flow velocities in several stages

Un	_{nax} in m/s	deepe	st part	deepest	but one	deepest	but two	deepest	but three
phase	situation	ebb	flood	ebb	flood	ebb	flood	ebb	flood
5	after 2nd	3.98*	3.37	2.34*	2.85*	1.80*	2.50*		
6	up to -2	4.22*	3.43	3.81*	3.84	2.28*	3.03*	1.94*	2.32*
7	up to -1	3.82*	3.38	3.28*	2.68*	2.38*	3.15*	2.02*	2.32*
8	up to MSL	3.27*	2.92	2.50*	2.91*	2.06*	2.32*	not app	olicable
9	up to 0.5	2.32*	2.67	1.98*	2.32*	not app	olicable		
10	up to $+1$	1.86*	2.18*	1.05*	1.55*				
11	up to HW	0.88*	1.55*	high wa	ater free				

* means limited by critical flow condition.

pure vertical closure (both channels simultaneously)

• raising the level simultaneously in all channels

full length vertically, phase: all

steps in the vertical closure

phase	action	foreshore	sec. gully	tidal flat	main gully
0	original state	250m; -0.5	200m; -4	300m; MSL	250m; -6.5
1	bottom prot. $+$ sill (-3.5)	250m; MSL	200m; -3.5	300m; +0.5	250m; -3.5
2	sills dumped (-3)	250m; MSL	200m; -3	300m; +0.5	250m; -3
3	sills dumped (-2.5)	250m; MSL	200m; -2.5	300m; +0.5	250m; -2.5
4	sill by trucks (-1)	250m; MSL	200m; -1	300m; +0.5	245m; -1
5	up to MSL	445m; MSL	5m; -1	300m; +0.5	250m; MSL
б	up to +0.5	445m; +0.5	5m; MSL	300m; +0.5	250m; +0.5
7	up to +1	445m; +1	5m; +0.5	300m; +1	250m; +1
8	up to HW	445m; +1.5	5m; +1	300m; +1.5	250m; +1.5

velocities in the vertical closure (phase 1-4)

U in m/s			main gap						
Q in m^3/s		during ebb		during flood		during ebb		during flood	
phase	action	U _{max}	Q _{max}						
0	original	1.09	915	1.07	940	1.09	1810	1.07	1825
1	protect. + sill	1.78	1230	1.66	1310	1.78	1535	1.66	1635
2	sills -3	2.06	1180	1.90	1310	2.06	1475	1.90	1635
3	sills -2.5	2.48	1110	2.23	1305	2.48	1385	2.23	1630
4	sill -1	2.99*	710	3.49*	1135	2.99*	870	3.49*	1390

full length vertically, phase 4

velocities in the vertical closure (phase 1-4)

U _{max} in m/s		deepest part		deepest but one		deepest but two		deepest but	
								three	
phase	situation	ebb	flood	ebb	flood	ebb	flood	ebb	flood
4	sill -1	3.62*	3.09	2.99*	3.49*	2.24*	2.74*	1.68*	2.27*
5	up to MSL	2.97*	2.87	2.33*	3.05*	1.98*	2.32*	not applicable	
6	up to 0.5	2.32*	2.64*	1.95*	2.41*	not applicable			
7	up to $+1$	1.90*	2.05	1.11*	1.55*				
8	up to HW	0.88*	1.55*	high water free					

full length, phase 3 to 4 and 4 to 5

uplift of impermeable bed protection

