Chapter 13: Construction methods for granular material

ct5308 Breakwaters and Closure Dams

H.J. Verhagen

March 28, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

Elements to consider

- Bed fixation or bed protection mattresses, etc.
- Shore connected and intermediate dam sections sand fill/quarry; execution
- Abutments sheetpile, caisson
- Breakwater core; dumped sills
- Cover layer, armour

Scour prevention

- Change of flow in course of time
- Flow distribution over the vertical
- Flow is not saturated with sediment
- Turbulence intensity increases

development of a scour hole

effective scour time

development of a scour hole

March 28, 2012

mattresses or granular filters

limited construction height
applicable on steep slopes
difficult to remove
presence of structural joints
vulnerable to mechanical damage
restricted lifetime

self healing after minor damage
absence of structural joints
simple to remove by dredging
no sudden change at the end; they can fade out gradually
absence of structural coherence
disintegration on steep slopes
considerable construction height

stability downstream of a sill

 $K_v = \frac{u_c \, uniform \, flow}{u_c \, with load \, increase}$

March 28, 2012

Shields with corrections

$$d = \frac{K_v^2 \overline{u}_c^2}{K_s \Psi_c \Delta C^2}$$

In Cress:
$$K_t = \frac{K_v - 1}{0.4} + 1$$

Rectangular Abutments: $K_v = 1.7 => K_t = 2.75$

March 28, 2012

example bed protection

- Bs = $2.5 \times 20 = 50 \text{ km}^2$
- depth = 10 m
- B = 500 m
- tidal difference = 3 m

Bed protection in case of horizontal closure

width	u0 (max)		D (cm)	W(kg)	
500	2,13		5	0	80/200
450	2,35		6	0	80/200
400	2,60		8	1	80/200
350	2,90		11	2	80/200
300	3,26		17	7	80/200
250	3,68		23	20	10/60
200	4,16		35	65	60/300
150	4,63		50	192	60/300
100	5,13		71	653	300/1000
50	5,47		90	1161	1/3
25	5,68		105	1794	1/3
10	6,27		158	6166	special

Mixing layers (from ct4310)

Jet equations (from ct4310)

Bed protection in case of vertical closure

depth	U0	u2	3*U2	D (cm)	W(kg)	
10	2.13	2.13	2.13	5	0	80/200
9	2.36	2.15	2.36	6	0	80/200
8	2.64	2.18	2.64	8	1	80/200
7	2.97	2.20	2.97	14	4	80/200
6	3.38	2.20	3.38	21	14	10/60
5	3.86	2.18	3.86	27	32	10/60
4	4.33	2.07	4.33	39	97	60/300
3	4.63	1.81	4.63	50	192	60/300
2	4.64	1.41	4.24	37	79	60/300
1	3.42	0.74	2.23	5	0	
0	3.13	0.41	1.22	1	0	

Conclusion: everywhere 60/300 is needed

providing quarry material

- by road
- by rail
- by water
- a combination

subsequent working fronts

Construction phases of the Zeebrugge Breakwater (1)

Construction phases of the Zeebrugge Breakwater (2)

Construction phases of the Zeebrugge Breakwater (3)

Construction phases of the Zeebrugge Breakwater (4)

Construction phases of the Zeebrugge Breakwater (5)

Construction phases of the Zeebrugge Breakwater (6)

The stones are faces with a layer of 1-3 tons stones plus filter construction with Poclain 600

Construction phases of the Zeebrugge Breakwater (7)

The seaward side is protected by 25-30 ton concrete blocks with an American Hoist 11-310

Construction phases of the Zeebrugge Breakwater (8)

ÍUDelft

a breakwater under construction

trucks waiting on the breakwater

use of cheap local equipment

March 28, 2012

build up of profiles

line dump

use of waterborne and land based equipment

land based equipment

	type	capacity (m ³)	weight (ton)	wheel load (ton) ground pressure	width (m)
(off higway) dump truck		20 - 90	empty: 30 - 110 loaded: 60 - 270	front/rear (ton) empty: 15/15 - 50/60 loaded: 20/40 - 90/180	wheel base 3.7 - 5.7
articulated dump truck		12 - 27	empty: 20 - 40 loaded: 40 - 90	front/rear (ton) empty: 10/10 - 20/20 loaded: 14/26 - 30/60	wheel base 5.7 - 6.8
wheel loader		2.5 - 9	15 - 86		bucket width 2.7 - 4.7
track loader		2.5 - 3	25	60 - 90 kPa	bucket width 2.7
backhoe crane		0.5 - 15	15 - 200	40 - 150 kPa	track gauge 2 - 5
front shovel		2 - 15	40 - 200	70 - 190 kPa	track gauge 2 - 5
bulldozer		blade width 2.5 - 5 m	10 - 80	50 - 100 kPa	track gauge 2 - 3

March 28, 2012

MACK DM 686 SX(6 x 4) nett carrying capacity 25,000 kg gross vehicle weight 8,200 kg front 29,480 kg rear 37,680 kg total

12,680 kg

340 ltr

12 m³

12.00 x 24

tipper truck vs. dump truck

WABCO 35C (4 X 4)

nett weight

fuel tank capacity

engine

tyres

rock body

nett carrying capacity	31,750 kg		
gross vehicle weight			
front .	18,865 kg		
rear	39,358 kg		
total	58,223 kg		
nett weight			
front	13,399 kg		
rear	13,073 kg		
total	26,472 kg		
engine: detroit 12v - 71n	320 kW at 2,100 rpm		
max. speed			
forward	66 km/hr		
backward	8.8 km/hr		
turning circle	14.9 m		
fuel tank capacity	454 ltr		
body contents			
struck	17.6 m ³		
heaped 1:1	26 m ³		
tyres	18.00 x 33 24 PLY		

space requirements for heavy equipment

lifting capacity of a crane

March 28, 2012

grab types

ROPE CLAMSHELL

capacity	1000 ltrs
type	2 ropes, digging
dead weight	1550 kg
width	1200mm

HYDR. GRAB

capacity	1000 ltrs
type	hydraulic grab with orange peel shells with mechanical swivel 360
no. of shells	5
max. load	8 tons
dead weight	1890 kg.

Waterborne equipment

- Bulk
 - Pipeline
 - Floating
 - flat deck barges
 - bottom door barges
 - split barges
 - tilt barges
 - side unloading vessels
- Individual placement

closure by pumping sand

March 28, 2012

barges for dumping material

March 28, 2012

example of combined transport and crane vessel

motion of a driven wheel

temporary road on soft subsoil

final closure with sand only

March 28, 2012

closure with a cable car

March 28, 2012

varying construction sequence

March 28, 2012

