Chapter 14: construction methods for monolithic structures

H.J. Verhagen

March 28, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

Use of caissons

- Caissons as breakwaters
- Caissons as part of closure dams
 - closed caissons
 - sluice caissons
- Monolithic units composed from
 - small units
 - large units constructed in situ
 - large units, prefabricated and floated to final position

typical block wall

construction of the Brighton breakwater

dredged dock for caissons

Foundations and abutments

- preparation
 - bring bed to desired level and smoothen it
 - keep it that way
 - provide proper connection
- after placing
 - load should be spread well
 - prevent piping
 - larger gap needed for turning in
 - verify on beforehand pressure differences

stability of a floating caisson

B= 9 m, H=12.5 m, wall thickness 0.5 m, concrete 24 kN/m³ I=L*B³/12 = 60.75 m⁴ V = 39.6 m MC = I/V = 60.75/39.6 = 1.53 m $m_c = c_b + MC - g_b = 2.2 + 1.53 - 4.8 = -1.07$ m

With Ballast: $m_c = 3.09 + 1.09 - 3.85 = 0.33$

stability of of a floating caisson ballasted with water

placing a caisson in Veerse Gat

March 28, 2012

9

caisson closure at Meldorf (Miele closure)

March 28, 2012

10