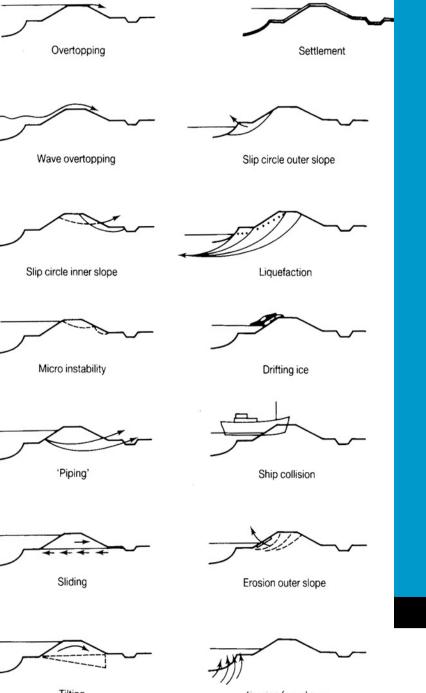
Chapter 15: Failure modes and optimisation

ct5308 Breakwaters and Closure Dams

H.J. Verhagen

March 28, 2012

Sri Lanka, Kudawella Tsunami damage of breakwater 2004

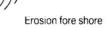

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

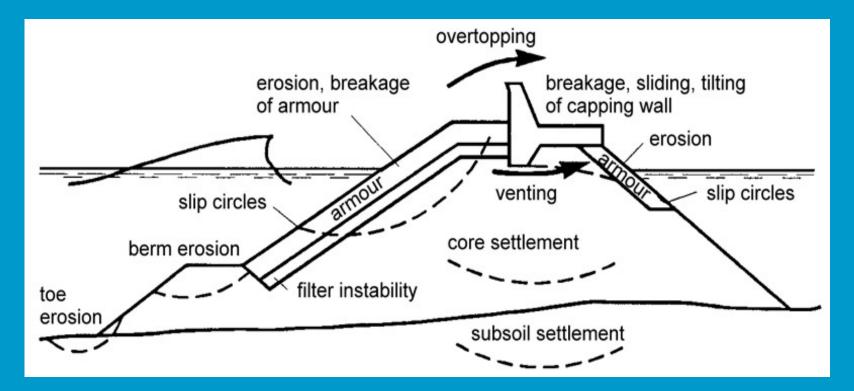
What is the most important element of a breakwater or closure dam ??

- the element which is the most expensive one
- the section which is the most costly one
- the element which is the most unreliable one
- the element which is the most sensitive to variations in the boundary conditions

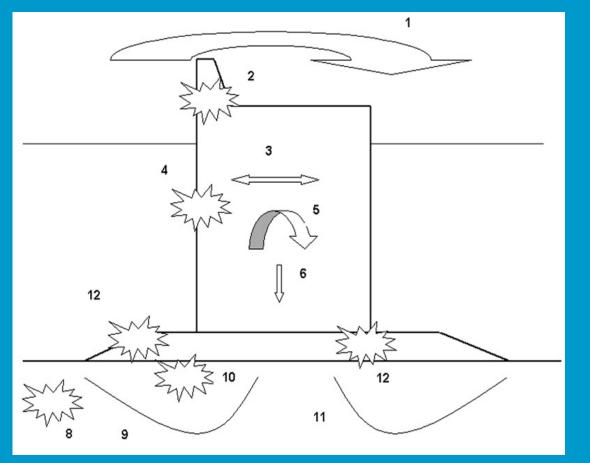
failure modes for dike-type structures



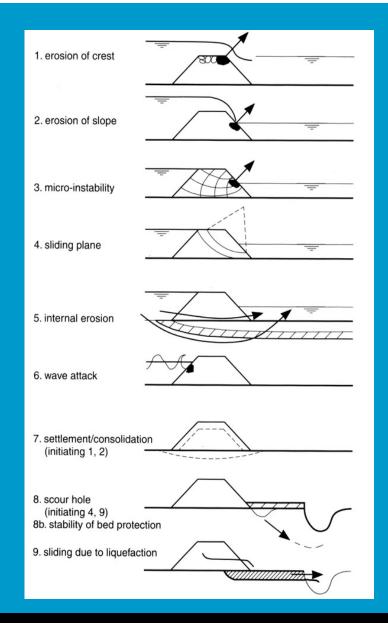
Failure of breakwater by earthquake



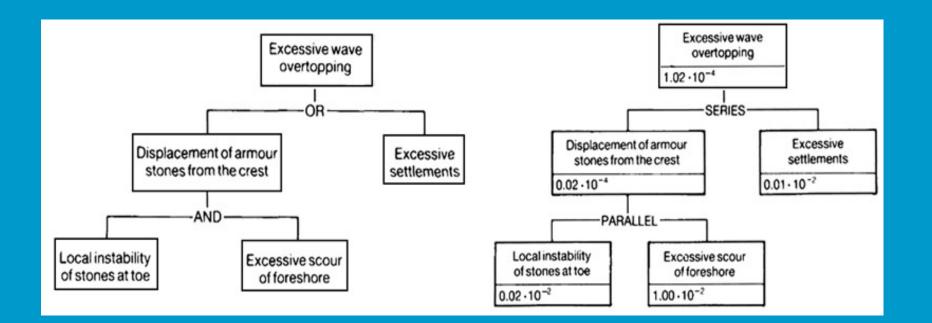
Tilting



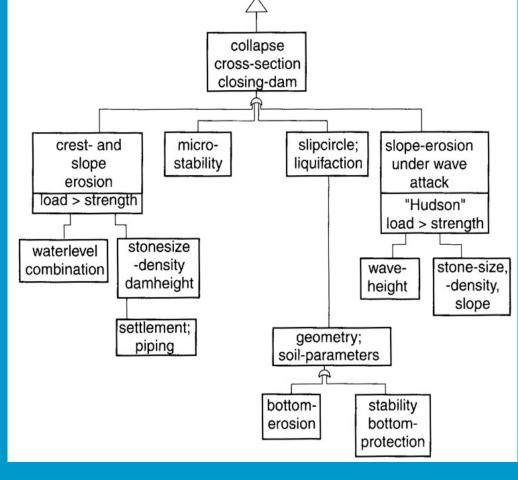
failure modes for a rubble mound (Burcharth, 1992)



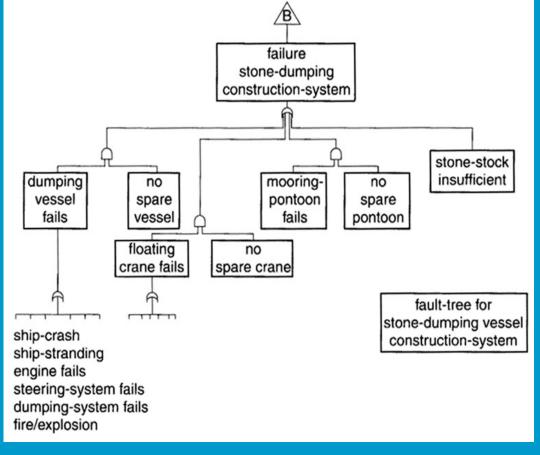
Failure modes for a monolithic breakwater



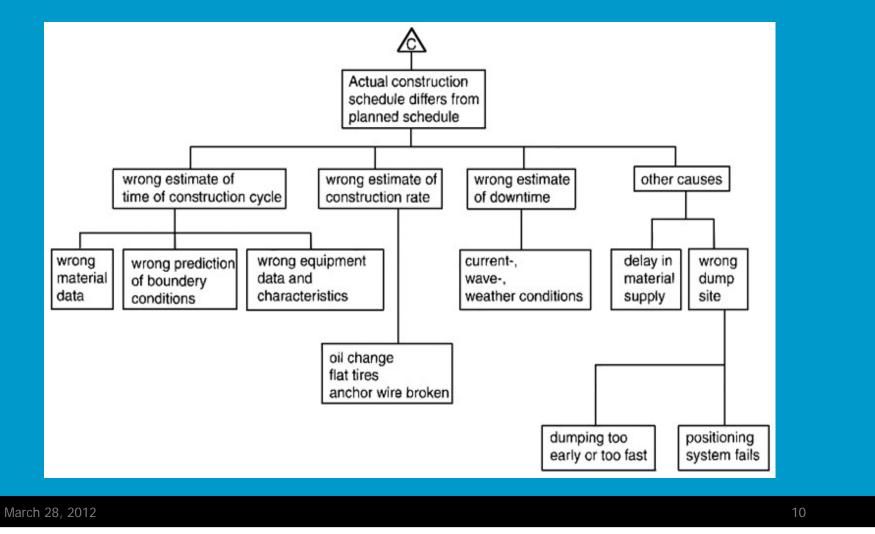
rock fill overflow dam failure modes


fault tree

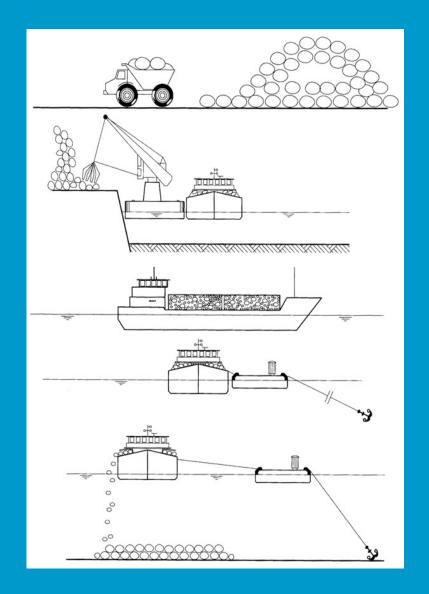
fault tree for closure dam (cross section)



March 28, 2012


8

fault tree for closure dam (equipment)

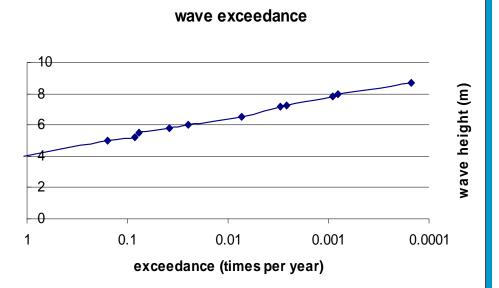


fault tree for construction planning

equipment utilisation in relation to fault tree

The Dilemma

• A strong and heavy breakwater does not require maintenance


... but is very expensive to construct

• A light breakwater is much cheaper to construct ... but requires a lot of maintenance

Wave Height H	Probability of
(m)	Exceedance
	(times per annum)
4	1.11
5	1.58*10 ⁻¹
5.2	8.4*10 ⁻²
5.5	7.62*10 ⁻²
5.8	3.8*10 ⁻²
6	2.47*10 ⁻²
6.5	7.35*10 ⁻³
7.15	3.0*10 ⁻³
7.25	2.63*10 ⁻³
7.8	9.0*10 ⁻⁴
7.98	8.0*10 ⁻⁴
8.7	1.5*10 ⁻⁴

Wave climate

development of damage

Actual Wave Height H	Damage in % of armour layer
$H < H_{nd}$	0
$H_{\rm nd} < H < 1.3 H_{\rm nd}$	4
$1.3H_{\rm nd} < H < 1.45H_{\rm nd}$	8
<i>H</i> > 1,45 <i>H</i> _{nd}	Collapse

Cost of construction

Initial cost	for armour units:	€1320 * H _d
	for core:	€8620

Design wave height	Initial cost	Initial cost Amour
H _{nd}	breakwater	Layer
	"C"	"A"
(m)	(€) per running meter	(€) per running meter
4	13900	5280
5	15220	6600
5.5	15900	7280
6	16540	7920

annual risk

<i>H</i> _{nd}	1 <	H < 1.3 H	-I _{nd}	1.3 <i>H</i> _n	_d < <i>H</i> < 1.	45 <i>H</i> nd		H > 1.45 H _{nd}	
	n = 4% damage		age	n = 8% damage			Collapse		
	Δρ	Δw	$\Delta p.\Delta w$	Δρ	Δw	$\Delta p.\Delta w$	Δp	Δw	$\Delta p.\Delta w$
(m)	(1/year)	(€)	(€/year)	(1/year)	(€)	(€/year)	(1/year)	(€)	(€/year)
4	1.02	420	430	4.6 10 ⁻²	860	40	3.8 10 ⁻²	13900	530
5	1.5 10 ⁻¹	530	80	4.7 10 ⁻³	1060	5	2.6 10 ⁻³	15220	40
5.5	7.4 10 ⁻²	580	40	2.2 10 ⁻³	1160		8 10 ⁻⁴	15900	10
6	2.4 10 ⁻²	630	15	7.5 10 ⁻⁴	1260	-	1.5 10 ⁻⁴	16540	3

average annual risk

H _{nd}	$S = \Sigma(\Delta p.\Delta w)$			
	Full repair of partial	Only repair of serious	No repair of partial	
	damage	damage(>8%)	damage	
(m)	(€per year)	(€per year)	(€per year)	
4	1000	570	530	
5	125	45	40	
5.5	50	10	10	
6	18	3	3	

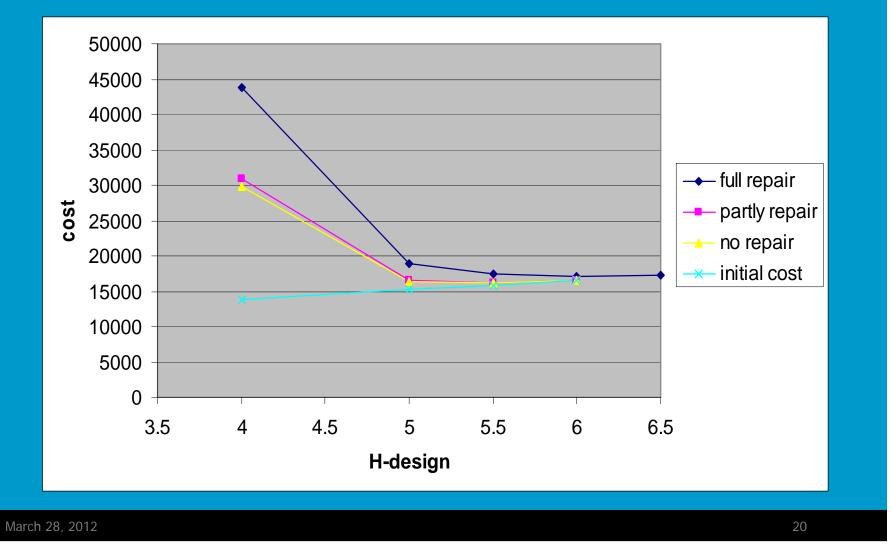
March 28, 2012

17

capitalised maintenance cost

H _{nd}	Capitalised risk S			
	Full repair of partial damage	Only repair of serious damage(>8%)	No repair of partial damage	
(m)	(€)	(€)	(€)	
4	30000	17100	15900	
5	3750	1350	1200	
5.5	1500	300	300	
6	540	90	90	

lifetime of 100 years; rate of interest 3.33%


total cost

H _{nd}	Total cost / + S			
	Full repair of partial damage	Only repair of serious damage(>8%)	No repair of partial damage	
(m)	(€)	(€)	(€)	
4	43900	31000	29800	
5	18970	16570	16420	
5.5	17400	16200	16200	
6	17080	16630	16630	
6.5	17300			

Adding up initial cost plus capitalised maintenance cost

total cost for various strategies

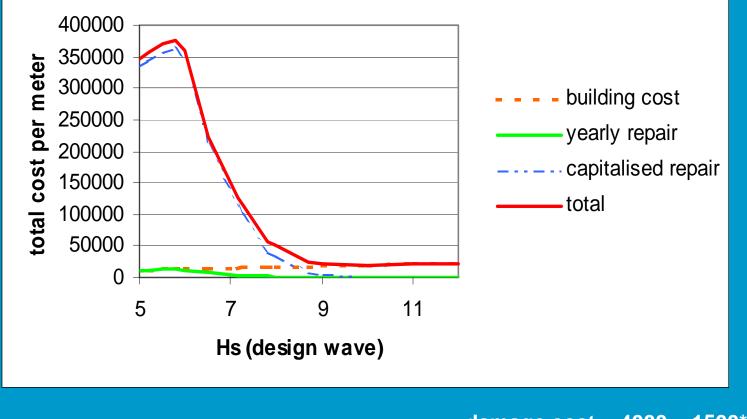
Conclusions for Rubble Mound Breakwaters

- There is an optimum design wave height
- Accepting regular maintenance is the best option
- This implies that the design also should allow a "repairable" breakwater

differences in breakwater type

- In case of overload a Rubble mound breakwater will suffer from some damage, which can be repaired.
- In general for Rubble mounds:

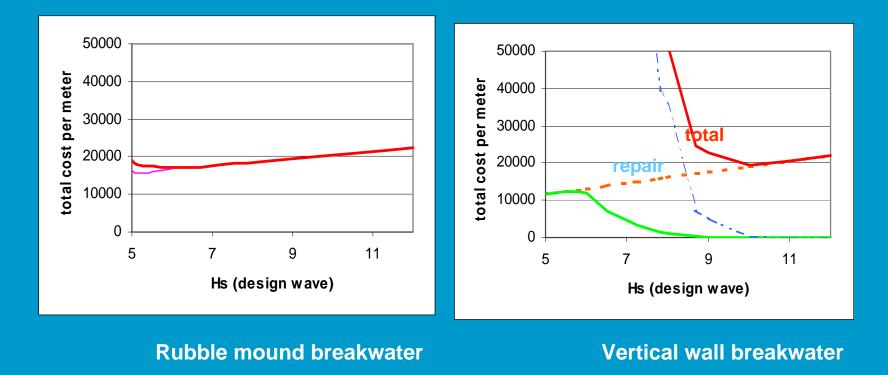
the amount of repair costs increase linear with the amount of overload:


 $cost = B * (H_{storm} - H_{design})$

• In general for Vertical wall breakwaters:

you have always a given fixed amount of damage, not depending on the amount of overload: cost = A + B (H_{storm} - H_{design})

Vertical wall breakwater


damage cost = 4000 + 1500*H_s

March 28, 2012

23

Conclusions

Conclusions (2)

- Rubble mound breakwaters are less sensitive to uncertainties in wave data
- If there is no overload, a Vertical wall breakwater requires less maintenance
- If there is overload, Vertical wall breakwaters cause much more problems

Including "secondary damage"

- When a breakwater is damaged, the port cannot function well
- The cost because of loss of production should be included in the calculation
- In general secondary damage will not change the tendency of the conclusion before, but make them more even more stronger:
 - The optimum for a rubble mound breakwater is allowing quite some damage, and doing a lot of repair

