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5. SCOUR 
 

5.1. Steady uniform flow in open channels 
 
This chapter is written with a view to bottom scour. The main outcome is the scour velocity 
as a function of the particle diameter. The coordinate system applied in this chapter is shown 
in Figure 34.  
 

 
Figure 34: Coordinate system for the flow in open channels. 

5.1.1. Types of flow 
 
Description of various types of flow are given in the following. 
 
Laminar versus turbulent 
 
Laminar flow occurs at relatively low fluid velocity. The flow is visualized as layers which 
slide smoothly over each other without macroscopic mixing of fluid particles. The shear 
stress in laminar flow is given by Newton’s law of viscosity: 
 

dz
du
⋅ν⋅ρ=τν  (5.1)

 
where ρ is density of water and ν kinematic viscosity ( ν = 10−6 m2/s at 200˚C). Most flows 
in nature are turbulent. Turbulence is generated by instability in the flow, which trigger 
vortices. However, a thin layer exists near the boundary where the fluid motion is still 
laminar. A typical phenomenon of turbulent flow is the fluctuation of velocity 
 

'wwW'uuU +=+=  (5.2)

 
Where: U and W are instantaneous velocities, in x and z directions respectively 

u and w time-averaged velocities, in x and z directions respectively 
u’ and w’ instantaneous velocity fluctuations, in x and z directions respectively 

Turbulent flow is often given as the mean flow, described by u and w. In turbulent flow the 
water particles move in very irregular paths, causing an exchange of momentum from one 
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portion of fluid to another, and hence, the turbulent shear stress (Reynolds stress). The 
turbulent shear stress, given by time-averaging of the Navier-Stokes equation, is: 
 

'w'ut ⋅⋅ρ−=τ  (5.3)
 
Note that 'w'u ⋅  is always negative. In turbulent flow both viscosity and turbulence contribute 
to shear stress. The total shear stress is: 
 

'w'u
dz
du

t ⋅⋅ρ+⋅ν⋅ρ=τ+τ=τ ν  (5.4)

 
Steady versus unsteady 
 
A flow is steady when the flow properties (e.g. density, velocity, pressure etc.) at any point 
are constant with respect to time. However, these properties may vary from point to point. In 
mathematical language: 
 

0
t

)property_flow_any(
=

∂
∂  (5.5)

 
In the case of turbulent flow, steady flow means that the statistical parameters (mean and 
standard deviation) of the flow do not change with respect to time. If the flow is not steady, it 
is unsteady. 
 
Uniform versus non-uniform 
 
A flow is uniform when the flow velocity does not change along the flow direction, see 
Figure 35. Otherwise it is non-uniform flow. 
 

 
Figure 35: Steady uniform flow in a open channel. 

 
Boundary layer flow 
 
Prandtl developed the concept of the boundary layer. It provides an important link between 
ideal-fluid flow and real-fluid flow. Here is the original description.  
For fluids having small viscosity, the effect of internal friction in the flow is appreciable only 
in a thin layer surrounding the flow boundaries. 
However, we will demonstrate that the boundary layer fulfill the whole flow in open channels. 
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The boundary layer thickness δ is defined as the distance from the boundary surface to the 
point where u = 0.995·U. The boundary layer development can be expressed as: 
 

Laminar flow 
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Turbulent flow 
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Figure 36: Development of the boundary layer. 

5.1.2. Prandtl’s mixing length theory 
 
Prandtl introduced the mixing length concept in order to calculate the turbulent shear stress. 
He assumed that a fluid parcel travels over a length ℓ before its momentum is transferred. 
 

 
Figure 37: Prandtl’s mixing length theory. 

 
Figure 37 shows the time-averaged velocity profile. The fluid parcel, located in layer 1 and 
having the velocity u1, moves to layer 2 due to eddy motion. There is no momentum transfer 
during movement, i.e. the velocity of the fluid parcel is still u1 when it just arrives at layer 2, 
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and decreases to u2 some time later by the momentum exchange with other fluid in layer 2. 
This action will speed up the fluid in layer 2, which can be seen as a turbulent shear stress τt 
acting on layer 2 trying to accelerate layer 2. The horizontal instantaneous velocity 
fluctuation of the fluid parcel in layer 2 is: 
 

dz
duuu'u 21 ⋅=−=  (5.8)

 
Assuming the vertical instantaneous velocity fluctuation having the same magnitude: 
 

dz
du'w ⋅−=  (5.9)

 
where the negative sign is due to the downward movement of the fluid parcel, the turbulent 
shear stress now becomes: 
 

2
2

t dz
du'w'u ⎟

⎠
⎞

⎜
⎝
⎛⋅⋅ρ=⋅⋅ρ−=τ  (5.10)

 
If we define kinematic eddy viscosity as: 
 

dz
du2 ⋅=ε  (5.11)

 
the turbulent shear stress can be expressed in a way similar to viscous shear stress: 
 

dz
du

t ⋅ε⋅ρ=τ  (5.12)

 

5.1.3. Fluid shear stress and friction velocity 
 
Fluid shear stress 
 
The forces on a fluid element with unit width is shown in Figure 38. Because the flow is 
uniform (no acceleration), the force equilibrium in x-direction reads: 
 

)sin(x)zh(gxz β⋅Δ⋅−⋅⋅ρ=Δ⋅τ  (5.13)
 
For small slope we have sin(β) ≈ tan(β) = S. Therefore: 
 

S)zh(gz ⋅−⋅⋅ρ=τ  (5.14)
 
The bottom shear stress is: 
 

Shg0zb ⋅⋅⋅ρ=τ=τ =  (5.15)
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Figure 38: Fluid force and bottom shear stress. 

 
Bottom shear stress 
 
In the case of arbitrary cross section, the shear stress acting on the boundary changes along 
the wetted perimeter, cf. Fig.5. Then the bottom shear stress means actually the average of 
the shear stress along the wetted perimeter. The force equilibrium reads: 
 

)sin(xAgxOb β⋅Δ⋅⋅⋅ρ=Δ⋅⋅τ  (5.16)
 
where O is the wetted perimeter and A the area of the cross section. By applying the 
hydraulic radius (R = A/O) we get: 
 

SRgb ⋅⋅⋅ρ=τ  (5.17)
 
In the case of wide and shallow channel, R is approximately equal to h and equation 5.15 is 
identical to equation 5.17. 
 
Friction velocity 
 
The bottom shear stress is often represented by friction velocity, defined by: 
 

ρ
τ

= b
*u  (5.18)

 
The term friction velocity comes from the fact that √ τb/ρ has the same unit as velocity and it 
has something to do with friction force. Inserting equation 5.17 into equation 5.18, gives: 
 

SRgu* ⋅⋅=  (5.19)
 
Viscous shear stress versus turbulent shear stress 
 
Equation 5.15 states that the shear stress in flow increases linearly with water depth, see 
Figure 39. 
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Figure 39: Shear stress components and distribution. 

 
As the shear stress is consisted of viscosity and turbulence, we have: 
 

S)zh(gtz ⋅−⋅⋅ρ=τ+τ=τ ν  (5.20)
 
On the bottom surface, there is no turbulence (u=w=0, u’=w’=0), the turbulent shear stress: 
 

0'w'ut =⋅⋅ρ−=τ  (5.21)
 
Therefore, in a very thin layer above the bottom, viscous shear stress is dominant, and hence 
the flow is laminar. This thin layer is called viscous sub layer. Above the viscous sub layer, 
i.e. in the major part of flow, the turbulent shear stress dominates, see Figure 39. The 
measurement shows the shear stress in the viscous sub layer is constant and equal to the 
bottom shear stress, not increasing linearly with depth as indicated by Figure 39. 

5.1.4. Classification of flow layers. 
 
Scientific classification 
 
Figure 40 shows the classification of flow layers. Starting from the bottom we have: 
1. Viscous sub layer: a thin layer just above the bottom. In this layer there is almost no 

turbulence. Measurement shows that the viscous shear stress in this layer is constant. The 
flow is laminar. Above this layer the flow is turbulent. 

2. Transition layer: also called buffer layer. viscosity and turbulence are equally important. 
3. Turbulent logarithmic layer: viscous shear stress can be neglected in this layer. Based on 

measurement, it is assumed that the turbulent shear stress is constant and equal to bottom 
shear stress. It is in this layer where Prandtl introduced the mixing length concept and 
derived the logarithmic velocity profile. 

4. Turbulent outer layer: velocities are almost constant because of the presence of large 
eddies which produce strong mixing of the flow. 
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Figure 40: Scientific classification of flow region (Layer thickness is not to scale, 

turbulent outer layer accounts for 80% - 90% of the region). 
 
Engineering classification 
 
In the turbulent logarithmic layer the measurements show that the turbulent shear stress is 
constant and equal to the bottom shear stress. By assuming that the mixing length is 
proportional to the distance to the bottom (ℓ=κz), Prandtl obtained the logarithmic velocity 
profile.  
Various expressions have been proposed for the velocity distribution in the transitional layer 
and the turbulent outer layer. None of them are widely accepted. However, by the 
modification of the mixing length assumption, see next section, the logarithmic velocity 
profile applies also to the transitional layer and the turbulent outer layer. Measurement and 
computed velocities show reasonable agreement.  
Therefore in engineering point of view, a turbulent layer with the logarithmic velocity profile 
covers the transitional layer, the turbulent logarithmic layer and the turbulent outer layer, see 
Figure 41.  
As to the viscous sub layer. The effect of the bottom (or wall) roughness on the velocity 
distribution was first investigated for pipe flow by Nikuradse. He introduced the concept of 
equivalent grain roughness ks (Nikuradse roughness, bed roughness). Based on experimental 
data, it was found 

1. Hydraulically smooth flow for 5ku s* ≤
ν
⋅ , Bed roughness is much smaller than the 

thickness of viscous sub layer. Therefore, the bed roughness will not affect the velocity 
distribution. 

2. Hydraulically rough flow for 70ku s* ≥
ν
⋅ , Bed roughness is so large that it produces 

eddies close to the bottom. A viscous sub layer does not exist and the flow velocity is not 
dependent on viscosity. 

3. Hydraulically transitional flow for 70ku5 s* ≤
ν
⋅

≤ , The velocity distribution is affected 

by bed roughness and viscosity. 
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Figure 41: Engineering classification of flow region (Layer thickness is not to scale). 

5.1.5. Velocity distribution 
 
Turbulent layer 
 
In the turbulent layer the total shear stress contains only the turbulent shear stress. The total 
shear stress increases linearly with depth (equation 5.15 or Figure 39), i.e. 
 

⎟
⎠
⎞

⎜
⎝
⎛ −⋅τ=τ

h
z1)z( bt  (5.22)

 
By Prandtl’s mixing length theory: 
 

2
2

t dz
du

⎟
⎠
⎞

⎜
⎝
⎛⋅ρ=τ  (5.23)

 
and assuming the mixing length: 
 

5.0

h
z1z ⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅κ=  (5.24)

 
with κ the Von Karman constant (κ=0.4) and h>>z, we get: 
 

z
u

z
1

dz
du *b

⋅κ
=

ρ
τ

⋅
⋅κ

=  (5.25)

 
Integration of the equation gives the famous logarithmic velocity profile: 
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*

z
zlnu)z(u  (5.26)
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where the integration constant z0 is the elevation corresponding to zero velocity (uz=z0=0), 
given by Nikuradse by the study of the pipe flows. 
 

*
0 u

11.0z ν
⋅=  Hydraulically smooth flow 5ku s* ≤

ν
⋅  (5.27)

s0 k033.0z ⋅=  Hydraulically rough flow 70ku s* ≥
ν
⋅  (5.28)

s
*

0 k033.0
u

11.0z ⋅+
ν

⋅=  Hydraulically transition flow 70ku5 s* <
ν
⋅

<  (5.29)

 
It is interesting to note that the friction velocity u*, which, by definition, has nothing to do 
with velocity, is the flow velocity at the elevation z=z0·eκ, thus: 
 

*ezz uu
0

=κ⋅=
 (5.30)

 
In the study of sediment transport, it is important to know that the friction velocity is the fluid 
velocity very close to the bottom, see Figure 42. 
 
Viscous sub layer 
 
In the case of hydraulically smooth flow there is a viscous sub layer. Viscous shear stress is 
constant in this layer and equal to the bottom shear stress, i.e. 
 

bdz
du

τ=⋅ν⋅ρ=τν  (5.31)

 
Integrating and applying uz=0=0 gives: 
 

zuz)z(u
2
*b ⋅
ν

=
ν
⋅

ρ
τ

=  (5.32)

 
Thus, there is a linear velocity distribution in the viscous sub layer. The linear velocity 
distribution intersect with the logarithmic velocity distribution at the elevation z=11.6ν/u*, 
yielding a theoretical viscous sub layer thickness: 
 

*u
6.11 ν
⋅=δν  (5.33)

 
The velocity profile is illustrated in Figure 42, with the detailed description of the fluid 
velocity near the bottom. 
 
Bed roughness 
 
The bed roughness ks is also called the equivalent Nikuradse grain roughness, because it was 
originally introduced by Nikuradse in his pipe flow experiments, where grains are glued to 
the smooth wall of the pipes. The only situation where we can directly obtain the bed 
roughness is a flat bed consisting of uniform spheres, where ks = diameter of sphere. 
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But in nature the bed is composed of grains with different size. Moreover, the bed is not flat, 
various bed forms, e.g. sand ripples or dunes, will appear depending on grain size and current. 
In that case the bed roughness can be obtained indirectly by the velocity measurement. 
 

 
Figure 42: Illustration of the velocity profile in hydraulically smooth and rough flows. 

5.1.6. Chézy coefficient. 
 
Chézy proposed an empirical formula for the average velocity of steady uniform channel 
flow: 
 

SRCU ⋅⋅=  (5.34)
 
Where:  R - Hydraulic radius, i.e. area of cross section divided by wetted perimeter  

S - Bed slope 
C - Empirical coefficient called Chézy coefficient. C was originally thought to    
be constant. Various formulas for C have been proposed. 

 
Here we will see that C can be theoretically determined by averaging the logarithmic velocity 
profile. Recalling that the friction velocity is (equation 5.19) and applying it into equation 
5.34, we get the expression of C: 

g
u
UC

*
⋅=  (5.35)
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Averaging the logarithmic velocity profile gives: 
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Inserting the above equation into equation 5.35 gives: 
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This can be approximated by: 
 

⎟
⎠
⎞

⎜
⎝
⎛

ν⋅
⋅⋅

⋅≈
3.3

uh12log18C *  Hydraulically smooth flow 5ku s* ≤
ν
⋅  (5.40)

⎟⎟
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⎛ ⋅
⋅≈

sk
h12log18C  Hydraulically rough flow 70ku s* ≥

ν
⋅  (5.41)

 
where the expression for z0 has been used and ln has been converted to log. Moreover the 
inclusion of g=9.8m/s2 means that C has the unit √m/s. 
 
Hydraulic roughness is expressed in terms of the Chézy (C), Manning-Strickler (n), Darcy-
Weisbach (λ). The relation between C and λ is: 
 

λ
⋅

=
g8C2  (5.42)

 
Equation 5.39 is often written as a function of the theoretical viscous sub layer thickness δν 
(equation 5.33) and the hydraulic radius (R=A/O): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+δ

⋅
⋅=

ν sk5.3/
R12log18C  (5.43)

 
Note that the hydraulic radius does not equal half the hydraulic diameter, but one fourth, 
since the hydraulic diameter D=4·A/O. The hydraulic diameter concept matches pipe flow, 
where the hydraulic diameter equals the pipe diameter for around pipe, where the hydraulic 
radius concept matches river flow, where for a wide river, the hydraulic radius equals the 
depth of the river.  
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Figure 43: Range of values of the roughness coefficient n for different types of channels. 
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In these equations ks is the equivalent sand roughness according to Nikuradse. For an alluvial 
bed the value of ks varies strongly with the flow conditions. In rivers the flow regime will 
often be hydraulically rough (ks>>d). According to Strickler the Chézy coefficient is: 
 

6/1

sk
RC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (5.44)

 
Most often used, and linked with Strickler's equation, is the Manning roughness formula (or 
Manning-Strickler roughness formula). The relation between Manning's roughness 
coefficient n and the Chézy coefficient C is (with R in meters): 
 

n
RC

6/1

=  (5.45)

 
Figure 43 gives an overview of Manning's roughness coefficient n for different types of 
channels. Chapter 5.3 will go into detail regarding the Darcy-Weisbach friction coefficient. 

5.1.7. Drag coefficient, lift coefficient and friction coefficient. 
 
Drag and lift coefficients 
 
A real fluid moving past a body will exert a drag force on the body, see Figure 44. 
 

 
Figure 44: Drag force and lift force. 
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Drag force is consisted of friction drag and form drag, the former comes from the projection 
of skin friction force in the flow direction, and the latter from the projection of the form 
pressure force in the flow direction. The total drag is written as: 
 

AUCF 2
2
1

DD ⋅⋅ρ⋅⋅=  (5.46)
 
The lift force is written in the same way: 
 

AUCF 2
2
1

LL ⋅⋅ρ⋅⋅=  (5.47)
 
Where: A - Projected area of the body to the plane perpendicular to the flow direction. 

CD, CL - Drag and lift coefficients, depend on the shape and surface roughness of the 
body and the Reynolds number. They are usually determined by experiments 

 
Friction coefficient 
 
Figure 45 illustrates fluid forces acting on a grain resting on the bed. The drag force: 
 

A)U(CF 2
2
1

DD ⋅⋅ς⋅ρ⋅⋅=  (5.48)
 
where ζ is included because we do not know the fluid velocity past the grain, but we can 
reasonably assume that it is the function of the average velocity and other parameters. 
 

 
Figure 45: Fluid forces acting on a grain resting on the bed. 

 
We can also say that the grain exerts a resistant force FD on the flow. If A’ is the projected 
area of the grain to the horizontal plane, the bottom shear stress is: 
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b U
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⋅ρ⋅⋅

λ
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⎞

⎜
⎝
⎛ ⋅ς⋅==τ  (5.49)

 
Where: f is the Fanning friction (4·f=λ) coefficient of the bed, which is a dimensionless 
parameter. By applying the Chézy coefficient we get: 
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f
g2C2 ⋅

=  (5.50)
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5.2. The Camp approach. 
 
When the height of the sediment increases and the hopper load parameter remains constant, 
the horizontal flow velocity above the sediment also increases. Grains that have already 
settled will be re-suspended and leave the basin through the overflow. This is called scouring. 
First the small grains will not settle or erode and when the level increases more, also the 
bigger grains will stop settling, resulting in a smaller settling efficiency.  
 
The shear force of water on a spherical particle is:  
 

2
sw s

2
1

4
1

⋅ρ⋅⋅λ⋅=τ  (5.53)

 
The shear force of particles at the bottom (mechanical friction) is proportional to the 
submerged weight of the sludge layer, per unit of bed surface (see Figure 21):  
 

dg)()n1(Nf wq ⋅⋅ρ−ρ⋅−⋅μ=⋅μ=  (5.54)
 
In equilibrium the hydraulic shear equals the mechanical shear and the critical scour velocity 
can be calculated. The scour ss velocity for a specific grain with diameter ds, according to 
Huisman (1995) and Camp (1946) is:  
 

w

swq
s

dg) - ()n1(8
 = s

ρ⋅λ

⋅⋅ρρ⋅−⋅μ⋅
 (5.55)

 
Grains that are re suspended due to scour, will not stay in the basin and thus have a settling 
efficiency of zero. In this equation, λ is the viscous friction coefficient mobilized on the top 
surface of the sediment and has a value in the range of 0.01-0.03, depending upon the 
Reynolds number and the ratio between the hydraulic radius and the grain size (surface 
roughness). The porosity n has a value in the range 0.4-0.5, while the friction coefficient μ 
depends on the internal friction of the sediment and has a value in the range of 0.1-1.0  for 
sand grains. 
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Figure 46: The equilibrium of forces on a particle. 

 
With μ·(1-n)=0.05 and λ=0.03 this gives: 
 

w

swq
s 3

dg) - (40
 = s

ρ⋅

⋅⋅ρρ⋅
 (5.56)

 
The particle diameter of particles that will not settle due to scour (and all particles with a 
smaller diameter) is: 
 

2
s

wq

w
s s

g) - (40
3 = d ⋅

⋅ρρ⋅
ρ⋅  (5.57)

 
Knowing the diameter ds, the fraction ps that will not settle due to scour can be found if the 
PSD of the sand is known. Equation 5.56 is often used for designing settling basins for 
drinking water. In such basins scour should be avoided, resulting in an equation with a safety 
margin. For the prediction of the erosion during the final phase of the settling process in 
TSHD’s a more accurate prediction of the scour velocity is required. 

5.3. The Shields approach. 
 
Let us consider the steady flow over the bed composed of cohesion less grains. The forces 
acting on the grain is shown in Figure 47.  
The driving force is the flow drag force on the grain, assuming that part of the surface of the 
particle is hiding behind other particles and only a fraction β is subject to drag and lift: 
 

4
d)u(CF

2
2

*w2
1

DD
⋅π

⋅β⋅⋅α⋅ρ⋅⋅=  (5.58)

 
The lift force is written in the same way: 
 

4
d)u(CF

2
2

*w2
1

LL
⋅π

⋅β⋅⋅α⋅ρ⋅⋅=  (5.59)

 
The submerged weight of the particle is: 
 

6
dg)(F

3

wqw
⋅π

⋅⋅ρ−ρ=  (5.60)
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Figure 47: Forces acting on a grain resting on the bed. 

 
At equilibrium: 
 

)FF(F LwD −⋅μ=  (5.61)
 
where the friction velocity u* is the flow velocity close to the bed. α is a coefficient, used to 
modify u* so that αu* forms the characteristic flow velocity past the grain. The stabilizing 
force can be modeled as the friction force acting on the grain. If u*,c, critical friction velocity, 
denotes the situation where the grain is about to move, then the drag force is equal to the 
friction force, so: 
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(5.62)
 
Which can be re-arranged into: 
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4
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 (5.63)

 
The Shields parameter is now defined as: 
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u

d

2
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=θ  (5.64)

 
Re-arranging gives a simple equation for the Shields parameter: 
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Since CD normally depends on the boundary Reynolds number Re*, the Shields θc number 
will be a function of the boundary Reynolds number Re*=u*·d/ν. Carrying out an equilibrium 
of moments around the contact point of a particle with the particle its resting on, results in the 
same equation. One can discuss which equation to use for the CD value and the CL value, 
since the particles are not free from the surface as with the determination of the settling 
velocity for individual particles, but for a first approximation equation 4.9 will be used. 
 
Now the question is, what would such a function look like. Figure 48 shows the relation 
between the Shields parameter and the boundary Reynolds number as is shown in Shields 
(1936). 
 

 
Figure 48: The original Shields (1936) curve. 

 
It is however interesting to investigate if this curve can be determined in a more fundamental 
way. Based on the theory in this chapter the following can be derived. 
 
Case 1: Hydraulically smooth flow (very low Re*). 
 
First lets assume a very small particle in a viscous laminar boundary layer. The particle is 
hiding for (1- β) behind other particles, which also means that β of the surface is subject to 
drag, assume β is about 0.5, which means the changes in drag area are about proportional 
with β. According to equation 5.32 the velocity u(z) in the viscous sub layer at β times the 
diameter d height is equal to: 
 

du)d(u
2
* ⋅β⋅
ν

=⋅β  (5.66)

 
Since the velocity develops linear with z, the drag force exerted on the particle, has to be 
found by integration of the velocity squared over the surface that is subject to the drag, but 
since the shape of the particle is not a square, but irregular, an effective velocity of 
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33
1 ⋅ =0.577 of the velocity at the top of the particle is chosen. This gives for the effective 
velocity on the particle: 
 

du3du3)d(u3u
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3
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2
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3
1

3
1

eff ⋅
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⋅β⋅⋅=⋅β⋅
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With: 
 

*
*

3
1

*eff udu3uu ⋅⋅
ν

⋅β⋅⋅=⋅α=  (5.68)

 
So the coefficient α is equal to: 
 

*3
1*

3
1 Re3du3 ⋅β⋅⋅=⋅

ν
⋅β⋅⋅=α  (5.69)

 
The Reynolds number for the flow around the particle is, assuming the hydraulic diameter of 
the particle equals 4 times the area that is subject to drag, divided by the wetted perimeter 
equals d: 
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The drag coefficient in this Stokes area equals, as already mentioned in chapter 4.: 
  

p
D Re

24C =  (5.71)

 
Substituting this in equation 5.65 gives for the Shields parameter: 
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Lets assume a mechanical friction coefficient of μ=0.5 and a surface factor β=0.5 (meaning 
that 50% of the particle is subject to drag). This would give a Shields parameter of 0.19. 
Soulsby & Whitehouse (1997) assume there is a  maximum of 0.3, but as can be concluded 
from equation 5.72, there must be a certain bandwidth depending on the mechanical friction 
coefficient μ and the fraction of the surface of the particle that is subject to drag β. Using 
equation 4.9 for the transition region for CD, gives: 
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Case 2: Hydraulically rough flow (very high Re*). 
 
Now lets consider a very course particle in turbulent flow. According to equation 5.26 the 
velocity equals to: 
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k033.0
zlnu)z(u  (5.74)

 
Assuming a roughness ks about equal to β times the particle diameter d, gives: 
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The effective velocity will be smaller, but since the particle is subject to turbulent flow in a 
logarithmic velocity field, equation 5.74 should be used to determine the effective velocity 
the part of the particle subject to drag, with respect to drag. For a logarithmic velocity field 
this is 0.764 times the velocity at the top of the particle, giving a velocity coefficient α=6.5, 
resulting in an effective velocity of: 
 

*eff u5.6u ⋅=  (5.76)
 
And a particle Reynolds number of: 
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The drag coefficient CD has a constant value of 0.445 for turbulent flow as described in 
chapter 4. Substituting this in equation 5.65 gives: 
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If the mechanical friction coefficient μ and the area coefficient β are chosen equal, this results 
in a Shields parameter θc of about 0.071 for the very high Reynolds Re* numbers. In 
literature a value of 0.055-0.060 is found, but measurements show a certain bandwidth. Using 
a mechanical friction coefficient μ of 0.45 and an area factor β of 0.55, results in a Shields 
parameter θc of 0.058, which matches literature. Values smaller then 0.5 for the area factor β 
are unlikely, because the Shields parameters predicts the beginning of erosion/scour of the 
entire sediment and there will always be particles with a higher area factor β up to about 0.75. 
Using this maximum area factor with a mechanical friction coefficient μ of 0.45, gives a 
Shields parameter θc of about 0.0425. Using equation 4.9 for the transition region, gives: 
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Case 3: Transitional flow (medium Re*). 
 
In the transitional area, both the linear velocity profile of the viscous sub layer and the 
logarithmic profile play a role in the forces on a particle. The transitional area has no fixed 
boundaries, but roughly its from Re*=0.5 to Re*=20. For the transitional area an empirical 
equation can be used for the velocity profile, according to: 
 

β⋅−=
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β⋅+=
β⋅+=

⋅−=α ⋅−

1183.0488.1D
0237.0063.0C

68.062.5B
70.062.5A

eBA
D

*ReC

 (5.80)

 
With: 
 

*p ReRe ⋅α=  (5.81)
 
Using equation 4.9 for the transition region for CD, and equation 5.63, the Shields curve can 
be determined. Figure 49 shows  the estimated curves for values of β of 0.475, 0.525, 0.6, 0.7, 
0.8, 0.9 and 1.0, with in the back ground the original Shields curve, while Figure 50 shows 
these with in the background measured values of the Shields parameter from Julien (1995). 
The estimated curves are calculated with a friction coefficient μ=0.45 and a lift coefficient 
CL=0.25. It is very well possible that in reality this coefficient may have a higher value. It is 
also possible that this coefficient depends on the particle diameter or the particle Reynolds 
number. 
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Figure 49: The estimated Shields curves versus the original Shields curve. 
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Figure 50: The estimated Shields curves for different values of β. 
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Figure 51: The 7 levels of erosion according to Delft Hydraulics (1972). 

 
The Delft Hydraulics (1972) defined 7 levels of erosion according to: 
1. Occasional particle movement at some locations. 
2. Frequent particle movement at some locations. 
3. Frequent particle movement at many locations. 
4. Frequent particle movement at nearly all locations. 
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5. Frequent particle movement at all locations. 
6. Permanent particle movement at all locations. 
7. General transport (initiation of ripples). 
 
As can be seen from Figure 51, the curves with the 7 values for β match closely with the 7 
levels according to Delft Hydraulics (1972), although there are differences. Since the factor β 
is the fraction of a particle that is subject to drag, this seems plausible. In a normal sediment, 
there will be a few particles that lay on top of the bed and that are subject to drag for 100%. 
These particles will be the first to move (erode), so this is level 1. Particles that are embedded 
for 50% will be much harder to move and form level 5 or higher.  

5.4. Shields approximation equations. 
 
Many researchers created equations to approximate the Shields curve. The original Shields 
graph however is not convenient to use, because both axis contain the shear velocity u* and 
this is usually an unknown, this makes the graph an implicit graph. To make the graph 
explicit, the graph has to be transformed to another axis system. In literature often the 
dimensionless grain diameter D* is used. This dimensionless diameter has already been used 
in equation 4.34 for the Grace method for determining the settling velocity, assuming the 
water density equals 1. This dimensionless diameter also called the Bonneville parameter is: 
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Figure 52: The Shields parameter as a function of the dimensionless diameter. 

 
With the normal values for the water density, the relative density and the viscosity, the 
dimensionless diameter is about 20.000 times the particle diameter, or 20 times the particle 
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diameter in mm. Figure 52 & Figure 53 show the Shields approximations of van Rijn (1993), 
Brownlie (1981), Zanke (2003), Soulsby & Whitehouse ((1997) completed with a lower limit, 
upper limit and average approximation derived for these lecture notes by the author. It is 
interesting to see that the van Rijn and Brownlie equations result in a continuously increasing 
Shields parameter with a decreasing dimensionless diameter, the Zanke approach does this 
also, but less steep, while the Soulsby & Whitehouse approach has a limit of 0.3 for very 
small particles, matching the model as described in the previous chapter. Only Soulsby & 
Whitehouse take the linear velocity profile in the viscous sub layer, resulting in a constant 
Shields parameter at very low Reynolds numbers, into account. 
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Figure 53: The Shields parameter as a function of the boundary Reynolds number. 

 
From the definition of the Shields parameter, the relation between the Shields parameter and 
the Bonneville parameter can be derived, the Shields parameter is: 
 

dgR
u
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cr ⋅⋅
=θ  (5.83)

 
The grain Reynolds number Re*, which defines the transition between hydraulic smooth and 
rough conditions for which grains protrude into the flow above the laminar sub layer δ at 
Re*=11.63 as: 
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Using equation 5.82, this gives: 
 



OE4626 Dredging Processes 
 

Author: Dr.ir. S.A. Miedema 72

5.1
** DRe ⋅θ=  (5.85)

 
So the Bonneville parameter is a function of the Shields number and the boundary Reynolds 
number according to: 
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Another parameter that is often used for the horizontal axis is the so called Grant and Madsen 
(1976) parameter or sediment fluid parameter, see Figure 54: 
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The factor of 4 appears in the definition of S* to render the numerical values of S* 
comparable with the Re* values in the traditional Shields diagram. This is done merely for 
convenience and has no physical significance. 
 

 
Figure 54: Modified Shields diagram, Madsen & Grant (1976). 

 
Which differs a factor 4 from the particle Reynolds number Rep: 
 

θ
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ν
⋅⋅⋅

= *5.1
*

d
p

ReD
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Re  (5.88)

 
This particle Reynolds number can be derived from equations 4.5 and 4.6, omitting the 
constants and assuming turbulent settling with a constant drag coefficient CD.  
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Figure 55: Modified Shields diagram using Rep (equation 5.88). 

 
Figure 56 shows the relation between the boundary or grain Reynolds number, the Bonneville 
parameter (dimensionless grain diameter) and the Grant & Madsen parameter. 
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Figure 56: The relation between the boundary Reynolds number, the Bonneville 

parameter and the Grant and Madsen parameter. 
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The different approximation equations are summarized below. 
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5.5. The Hjulstrom approach. 

The Hjulstrøm curve is a graph used by hydrologists to determine whether a river will erode, 
transport or deposit sediment. The graph takes sediment size and channel velocity into 
account. The x-axis shows the size of the particles in mm. The y-axis shows the velocity of 
the river in cm/s. The tree lines on the diagram show when different sized particles will be 
deposited, transported or eroded. The Curve uses a double logarithmic scale. 

The curve shows several key ideas about the relationships between erosion, transportation 
and deposition. The Hjulstrøm Curve shows that particles of a size around 1mm require the 
least energy to erode, as they are sands that do not coagulate. Particles smaller than these fine 
sands are often clays which require a higher velocity to produce the energy required to split 
the small clay particles which have coagulated. Larger particles such as pebbles are eroded at 
higher velocities and very large objects such as boulders require the highest velocities to 
erode. When the velocity drops below this velocity called the line of critical velocity, 
particles will be deposited or transported, instead of being eroded, depending on the river's 
energy. 

Threshold of Motion 

Grains forming the boundary between a fluid and a sediment possess a finite weight and 
finite coefficient of friction. When the applied shear stress is low they are not brought into 
motion. As applied shear stress is increased, a critical shear stress is reached at which grains 
will begin to move. The value of the critical stress will depend primarily on the size and 
density of the particles and secondarily on their shape and packing and the cohesive forces 
acting between particles.  

 

One the critical stress is just exceeded, particles will advance in the direction of flow due to 
irregular jumps or less commonly rolls. This mode of transport is termed the bed load and 
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conceptually can be thought of as being deterministic, that is the behavior of a particle once 
in motion is dominated by the gravity force. As the stress is further increased, particles will 
also begin to be suspended in solution and subject to turbulent forces. This mode of transport 
is termed the suspended load. Due to these two modes of transport there will be a flux of 
material across a plane perpendicular to the flow. Our ultimate goal is to determine this mass 
flux by integrating the product of the velocity profile and concentration profile.  

The Critical Stress 

The motion of sediment can be parameterized in a number of ways. The oldest of these is due 
to Hjulstrom who summarized observational data in terms of fluid velocity and grain size.  

There are a number of variants of the Hjulstrom diagram, using grain diameter as one 
parameter and some measure of the stress as the other (via the quadratic stress law: u, u100 or 
stress itself: u*):  
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In several of these figures there is a envelope of values for small particles, contrasting 
unconsolidated and consolidated/cohesive sediment. This reflects the importance of inter 
particle forces because of the higher ratio of surface area to volume. 

Sundborg (1956) - added more detail, and dealt with consolidation in fine-grained end.  

 
 

 
Figure 57: 
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Figure 58: 
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Figure 59: A comparison between the Hjulstrom curve and the Shields curve. 
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5.6. Friction coefficient and pressure losses with homogeneous water flow. 
 
When clear water flows through the pipeline, the pressure loss can be determined with the 
well known Darcy-Weisbach equation: 
 

2
w2

1
w v

D
Lp ⋅ρ⋅⋅⋅λ=Δ  (5.96)

 
The value of the friction factor λ depends on the Reynolds number: 
 

ν
⋅
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DvRe  (5.97)

 
For laminar flow (Re<2320) the value of λ can be determined according to Poiseuille: 
 

Re
64

=λ  (5.98)

 
For turbulent flow (Re>2320) the value of λ depends not only on the Reynolds number but 
also on the relative roughness of the pipe ε /D. A general implicit equation for λ  is the 
Colebrook-White equation: 
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For very smooth pipes the value of the relative roughness ε/D is almost zero, resulting in the 
Prandl & von Karman equation: 
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This can be approximated by: 
 

2

7
Relog

309.0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=λ  
(5.101)

 
At very high Reynolds numbers the value of 2.51/(Re⋅√λ) is almost zero, resulting in the 
Nikuradse equation: 
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Because equations 21 and 22 are implicit, for smooth pipes approximation equations can be 
used. For a Reynolds number between 2320 and 105 the Blasius equation gives a good 
approximation:  
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For a Reynolds number in the range of 105 to 108 the Nikuradse equation gives a good 
approximation:   
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Figure 60: TheMoody diagram determined with the Swamee Jain equation. 

 
Over the whole range of Reynolds numbers above 2320 the Swamee Jain equation gives a 
good approximation: 
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(5.105)



OE4626 Dredging Processes 
 

Author: Dr.ir. S.A. Miedema 81

286.0

H
d163.0 ⎟
⎠
⎞

⎜
⎝
⎛⋅=λ   Burt 

 
333.0

R
k128.0 ⎟
⎠
⎞

⎜
⎝
⎛⋅=λ  Strickler 

 

 
Figure 61: The original Moody diagram. 
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5.7.  Determination of scour related to the TSHD.  
 
After discussing the erosion phenomena extensively in the previous chapters, it is the 
question how to apply this in the model for determining the loading process of a TSHD. The 
first step is to find which particles will not settle due to scour at which average velocity above 
the sediment in the hopper. The relation between the shear velocity u* and the average 
velocity above the bed is Ucr: 
 

2
cr

2
* U

8
u ⋅

λ
=  (5.106)

 
Substituting this in equation 5.64 for the Shields parameter gives: 
 

dgR
U

8dgR
u

d

2
cr

d

2
*

cr ⋅⋅
⋅

λ
=

⋅⋅
=θ  (5.107)

 
Re-arranging this gives an equation for the critical average velocity above the bed Ucr, that 
will erode a grain with a diameter ds: 
 

cr d s
cr

8 R g dU  = ⋅ θ ⋅ ⋅ ⋅
λ

 (5.108)

 
Equation 5.108 is almost identical to equation 5.55 as derived according to the simple Camp 
(1946) and Huisman (1995) approach. In the same way as equation 5.57 this can be written as: 
 

2 2
* cr

s
d d cr

u Ud
R g d 8 R g

λ= = ⋅
⋅ ⋅ ⋅ ⋅ θ

 (5.109)

 
With a value of λ=0.03 and θcr=0.05 equation 5.109 would be equal to equation 5.57. 
 
Since the final phase of the hopper loading process is dominated by scour, the above 
assumption is to simple. Figure 52 shows that the grain sizes we are interested in, from 
0.05mm up to 0.5mm, give Shields values θcr of 0.2 to 0.03 if we use the original Shields 
curve or one of the approximation curves. The friction coefficient λ, may vary from about 
0.01 for fine grains and a smooth bed to 0.03 or higher for a hydraulic rough bed. Figure 59 
shows how the value of λ varies as a function of the grain diameter. In the grain size range of 
interest this λ varies from about 0.01 to 0.02. This results in a range for the ratio between the 
Shields parameter and the friction coefficient of θcr/ λ of 0.2/0.01 to 0.03/0.02, giving a range 
of 20 to 1.5. Equation 5.55 gives a ratio of 1.66 which is in the range and matches with grains 
of about 0.5 mm, giving an upper limit to the scour velocity. 
 

 


