
1

 Hydraulics: theoretical background

2. Water transport through pipes

2.1 Introduction
One of the basic rules of nature is that water flows
from a high energy level to a low energy level. The
high energy level can for instance be a storage tank
at a high level as a water tower or a tank on a hill. It
can also be the high pressure induced by pumps.
For the drinking, sewerage and irrigation practise we
focus on the flow in open channel or partially filled
pipes and flow through surcharged filled closed pipes.
These are the most common phenomena in the wa-
ter transport in these fields.

Characteristic for water transport through partially
filled pipes or open channels is that pressure at the
fluid surface is atmospheric. Consequently open
channel flow is always induced by surface fluid level
difference between the upstream boundary and the
downstream boundary. The upstream level may, for
instance, be an open water surface or an inflow from
a house manifold at a sewer system. A downstream
flow can be an outflow over a weir. Flow is induced
by gravity.

Open channel flow allows for storage of water within
the profile, through changes of water level. Upstream
inflow of water doesn’t necessarily instantaneously

cause an out flow at the down stream end, but water
can be stored in the channels causing a rise in water
level. In urban drainage systems a deliberate stor-
age is wanted or even needed in the system, for in-
stance by putting weirs at the down stream bound-
ary.
In open channel flow the storage capacity is an im-
portant describing factor.

The energy difference in pressurized flow in sur-
charged and closed pipes is mostly induced by an
energy input at the upstream boundary by pumps or
by an elevated reservoir.

Closed and surcharged pipes don’t have significant
storage capabilities. The storage capability is for in-
stance the stretching of the pipe and the compres-
sion of the water. This causes high pressures be-
cause of the stiffness of the pipe and the high
compressibility of the water and is called water ham-
mer and occurs when changes in flow velocity are
relatively rapid. This type of flow is described sepa-
rately. In closed pipe flow friction loss is the main
describing factor for energy losses.
In this chapter we first deal with pressurised flow,
than with open channel flow and conclude with the
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phenomenon water hammer.

2.1 Pressurised flow
In pressurised flow through pipes the pressure at the
start of the pipe is higher than atmospheric. An open
(high level) reservoir or a pump induces the pres-
sure at the beginning of the pipe (see figure XX’s).
Flow through the pipe will cause an energy loss due
to friction loss and local losses caused by release of
flow lines (entrance and decelaration losses).
Schematically all the losses and levels are summa-
rized static pressure and dynamic pressure in figure
XX.

Mathematical description

Two equations describe the flow through pipes:
3 Continuity equation or mass balance
4 Motion equation or momentum balance

2.1.1 Mass balance/continuity equation
A control volume of pipe is considered with a cross
section A and a length dx The mass balance states
that ingoing mass equals outgoing mass. Incoming
mass in a time frame dt is:

inQ dt uAdtρ ρ= (eq. 2.1)

with
Qi n : Incoming volume flow [m3/s]
ρ : Specific mass [kg/m3]
u : Mean velocity [m/s]
A : Cross section of the pipe [m2]
Outgoing mass is analogue with the ingoing mass

outQ dt uAdtρ ρ= (eq. 2.2)

The mass balance over a time frame dt is

in outQ t Q t A x∂ = ∂ + ∂ ∂ (eq. 2.3)

in words: ingoing mass equals outgoing mass plus
storage within the control volume. The storage is the
changing of the cross section dA.

Dividing the mass balance by δxδt gives

0
A Q
t x

∂ ∂
+ =

∂ ∂
   (eq. 2.4)

Momentum equation
Referring to Battjes (CT3310, chapter 2) the momen-
tum equation is

2

0f

Q QQ Q p
gA c

t x A x AR
 ∂ ∂ ∂

+ + + = ∂ ∂ ∂ 
(eq. 2.5)

with
g : Gravitation
R : Wet perimeter
cƒ : friction coefficient

The system of the continuity equation and the mass
balance are known as the equations of De Saint-
Venant (1871)

The dimensionless coefficient cf can be expressed
in the Chézy coefficient as cƒ  = g/C2. With Q=uA the
momentum equation becomes

2
22 0u A u A p g AA u Au u gA u u

t t x x x C R
∂ ∂ ∂ ∂ ∂+ + + + + =
∂ ∂ ∂ ∂ ∂

(eq. 2.6)

2.1.3 Rigid column approach
Water transport through pipes is characterised with
slow changing boundary conditions. When the so-
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called rigid column simplification is applied the pre-
sumptions are made:

o Uniform and stationary flow
o Prismatic pipe: The cross section of the pipe

doesn’t change over the length of the pipe re-

sulting in 0
A
x

∂
=

∂

o Water is incompressible

o Elasticity of the pipe is negligible: 0
A
t

∂
=

∂
o The fluid meets Newton’s criteria being that vis-

cosity is constant and only dependent on tem-
perature.

The continuity equation then transforms in

0
Q
x

∂
=

∂
 which becomes:

0 0 0 0
Q uA u A u

A u
x x x x x

∂ ∂ ∂ ∂ ∂
= → = → + = → =

∂ ∂ ∂ ∂ ∂
(eq. 2.7)

And the momentum balance than becomes:

2 0
u p g A

A gA u u
t x C R

∂ ∂
+ + =

∂ ∂
(eq. 2.8)

substituting 
Q

u
A

=  and dividing by gA gives

2 2

1
0

Q QQ p
gA t x C A R

∂ ∂
+ + =

∂ ∂
(eq. 2.9)

Considering a piece of pipe with length L and inte-
grating the equations over this pipe length gives

2 2
0 0 0

2 1 2 2

1

1

x L x l x l

x x x

Q Qp Q
dx dx dx

t gA t C A R

Q QQ
p p L L

gA t C A R

= = =

= = =

∂ ∂
= − − ⇒

∂ ∂

∂− = − −
∂

∫ ∫ ∫

(eq. 2.10)

In stationary flow, the term 
Q
t

∂
∂

 becomes zero or
negligible: flow will only slowly change over time.
For the roughness of the pipe wall in this equation
the Chézy-coefficient is used. Often this is replaced

by the Darcy-Weissbach friction coefficient 2

8g
C

λ = .

Different formulas are applied to calculate the fric-
tion coefficient λ, which is referred to in the next para-
graph.
Combined with the substitution of the Darcy-
Weissbach friction coefficient the socalled Darcy-
Weissbach equation remains:

Picture of de Saint-Venant

Jean Cleade de
Saint-Venant (1797-
1886) graduated at
the Ecole Polytech-
nique in 1816. He had
a fascinating career
as a civil engineer
and mathematics
teacher at the Ecole
des Ponts et Chaus-
sées where he suc-

ceeded Coriolis. Seven years after Navier’s death,
Saint-Venant re-derived Navier’s equations for a
viscous flow, considering the internal viscous
stresses, and eschewing completely Navier’s mo-
lecular approach. That 1843 paper was the first to
properly identify the coefficient of viscosity and its
role as a multiplying factor for the velocity gradi-
ents in the flow. He further identified those prod-
ucts as viscous stresses acting within the fluid
because of friction. Saint-Venant got it right and
recorded it. Why his name never became associ-
ated with those equations is a mystery. certainly it
is a miscarriage of technical attribution.
It should be remarked that Stokes, like de Saint-
Venant, correctly derived the Navier-Stokes equa-
tions but he published the results two years after
decSaint-Venant.
In 1868 de Saint-Venant was elected to succeed
Poncelet in the mechanics section of the Académie
des Sciences. By this time he was 71 years old,
but he continued his research and lived for a fur-
ther 18 years after this time. At age 86 he trans-
lated (with A Flamant) Clebsch’s work on elastic-
ity into French and published it as Theorie de
l’élasticité des corps solides and Saint-Venant
added notes to the text which he wrote himself.
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π

− = =

(eq. 2.11)

Another popular representation of the Darcy Weiss-
bach formula is:

2

2
L u

H
D g
λ

∆ = (eq. 2.12)

2.3 Friction coefficients and local
losses

In Battjes (CT2100, chapter 12.4) an extensive elabo-
ration on different friction parameters is given, both
theoretically and experimentally determined. The
most used formulas are those of Manning, Chézy
and White Colebrook.
White and Colebrook (1937) performed experiments
to asses how ë varies in the transition from smooth
to rough conditions as a function of the Reynolds
number at a constant relative roughness. They found
that λ in technical rough pipes much smoother var-
ies than in experiments of Nikuradse. Colebrook de-
veloped an expression with which λ can be
deterimend as a function of the relative roughness
in Nikuradse’s coefficient k/D and the Reynolds
number:

1 2,5
2log 0,27

Re
Nk

Dλ λ
 

= − + 
 

(eq. 2.13)

This formula can only iteratively be solved. The vari-
able determining the friction coefficient is the
Nikuradse roughness of the pipe wall. This can vary
between 0,05 mm for smooth pipes like PVC or PE
pipes and 20 mm for old cast iron pipes with large
encrustations.
In network calculation programs the λ-value is cal-
culated automatically as a function of the hydraulic
circumstances expressed in the Reynolds number
and the relative roughness of the pipe expressed in
k/D.
For convenience diagrams are developed to quickly
determine the value of λ. The Moody-diagram is the
most commonly used diagram. This diagram is
shown in figure 2.8.

Local losses
Local losses are caused by sudden deceleration of
flows combined with release of flow lines from the
pipe wall. Examples are given in figure 2.9.

In fact local losses are separately addressed because
this is a violation of the assumption that the pipes

are prismatic 0
A
x

∂
=

∂
.

Local losses depend on the velocity in the pipe and
are expressed in an analogue formula as the Darcy
Weissbach equation.

2

2local
u

H
g

ξ∆ = (eq. 2.14)

For the value of ξ a lot of experiments have been

Release of flow linesRelease of flow lines

Fig. 2.9 - Release of flow lines in sudden increase in
diameter and in bends

Fig. 2.8 - Moody diagram
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performed resulting in large tables with all kind of
hydraulic situations and the resulting local loss coef-
ficient. An extensive handbook is made by I’del cik,
which is used all over the world.

Some examples of such tables are in appendix 2.1.

2.4 Summary of pressurized transport
The factors determining the energy losses during
pressurized flow are schematically drawn in figure
2.10.
Energy losses are mainly friction losses and decel-
eration losses. The formula of Darcy Weisbach is
one dimensional and there is no time dependency.
Network calculations based on the one-dimensional
formulas are so-called steady state calculations.

2.5 Open channel flow
When turning to open channel flow, occuring in sani-
tary engineering in urban drainage networks, exactly
the same principles are applied as in pressurised flow.
In this also a 1-dimensional approach is usually
adopted. This means that the (3 dimensional) veloc-
ity vector in the momentum and mass-balance equa-
tion are integrated into a one-dimensional form. The
dependent variables are integrated quantities. In or-
der to get a closed system of equations simplifying
assumptions are needed. Local effects such as
caused by weirs, are taken into account by estimat-
ing their effect on the integrated equations. The re-
duction into one space dimension is defensible; when
studying the geometry of a conduit in an urban drain-
age system the flow is to a large extent 1-dimen-
sional, except for the velocity field at the direct en-
trance. In manholes the velocity field is 3-dimen-
sional, but this can be circumvented in a 1-D model
by applying extra terms to account for frictional
losses.

The equations applied in a 1-dimensional approach
are the well-known De Saint-Venant equations (De
Saint-Venant (1871)):

Momentum balance:

{ {
2

0f
h

I III IVII

Q QQ Q h
gA c

t x A x R A
β

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂  1424314243 (eq. 2.15)

Mass balance:

( )
( ) 0

Q A h Q h
B h

x t x t
∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

(eq. 2.16)

In which:
Q discharge (m3/s)
A cross-sectional area (m2)
B width of the free water surface (m)
g gravitational acceleration (≈9.813 m/s2)
Rh hydraulic radius (m)
cf resistance constant (-)
h water level (m)
x location along x-axis (m)
t time (s)
β Boussinesq’s number (-)

The assumptions applied are:
- Hydrostatic pressure.
- Velocity components in y and z direction are neg-

ligible compared to the velocity component in x
direction  (uy=uz<<ux).

The individual terms in the momentum balance equa-
tions (eq. 2.15) are:

I acceleration term
II convective term
III gravitational term
IV friction term

The third term may also be written as:

{ {b
b

IIIb
IIIa

zh a a
gA gA gA i

x x x x

 
∂∂ ∂ ∂   = + = −   ∂ ∂ ∂ ∂    

(eq. 2.17)

In which:
a water depth (m)
zb bottom level (m)
ib bottom slope (-)
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Fig. 2.10 - Losses and energy levels
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Term IIIa is the pressure term and term IIIb is the
gravity term.

The De Saint-Venant equations (using the dynamic
wave approach) form a hyperbolic system of partial
differential equations. This implies that in order to
obtain a well-posed problem the initial condition (Q
and h at t=0) and two boundary conditions have to
be defined.

Several possible simplifications of eq. 2.15 and 2.16
are applied depending on the possibility of neglect-
ing terms in the momentum balance equation. For
instance when terms I and II (the inertia terms) can
be neglected, which is the case when the flow varies
only slowly with time and space, either the kinematic
or diffusion wave equation is obtained. In Table 1
the possible simplifications for the momentum equa-
tions are summarised along with the identification
normally used.

The simplified versions of the momentum equation
are mostly used to drive analytical solutions for spe-
cial (academic) cases, or to simplify the numerical

calculation for practical cases. In fact the first com-
puter programs applied in the field of urban drain-
age (end of the 1970’s and the early 1980´s) were
based on the kinematic wave simplification. The main
reason for this was that the inertia terms (especially
the convective term) are more difficult to handle in
terms of numerical stability, computational effort and
RAM. Nowadays there is a very high degree of
acciability to computational power which has led to
a situation in which any network can be dealt with
using the full dynamic wave equations.

Due to the integration of two space dimensions, sev-
eral new parameters enter the equations. For in-
stance, the geometry of the problem like hydraulic
radius, wetted area and hydraulic depth are such
parameters. The parameter β in the convective term
(term II) is the Boussinesq number (Boussinesq,
(1897)), defined by:

2

0
2

A

u dA

u A
β =

∫
(eq. 2.18)

The Boussinesq number accounts for the fact that
the velocity is not uniformly distributed over the cross
section of the flow, in fact it is a correction factor due
to simplifying the 3-dimensional flow equations.

The value for β is >1 and can eventually reach val-
ues >1.2 in extreme cases, e.g. when a sediment
bed is present in a channel with a circular cross sec-
tion at shallow water depths, see Kleywegt (1992).
In practice, however a value of 1 is applied since the
effect is rather limited when compared to the uncer-
tainty in other parameters introduce in the equations
(for instance the value for the wall roughness en lo-
cal loss coefficients).

Fig. 2.11 - Definition sketch
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I+II+III+IV Dynamic wave no additional assumptions 
I+II+III Gravity wave friction is sma ll compared to 
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III+IV Diffusion wave inertia terms are small compared 

to gravity and friction 
IIIb+IV Kinematic wave inertia terms are small compared 

to gravity and friction and  
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∂

 

 

Table 1 - Possible simplification for the momentum equation
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Transition between open channel flow and sur-
charged transport
A problem is encountered when pipes starts to flow
full, instability-like phenomena evolve. It should be
stated however, that in reality when pipes tend to
flow full a kind of chaotic behaviour may occur (see
Fig 2.12). This is because air escaping between the
water level and the pipe wall influences the water
flow.

It was observed in laboratory experiments (see e.g.
de Somer (1984)) that even at steady state flow un-
der certain geometrical conditions unpredictable

transitions in flow mode can occur. The origin of nu-
merical instabilities at nearly full flow  can be char-
acterised as a boundary condition problem. Essen-
tially, it is so that nowhere in the system the water
level is fixed, under pressurised conditions this im-
plies that the flow is defined by a difference in pres-
sure only. Therefore, the absolute water level or,
equivalently, the local pressure is undefined by lack
of a boundary condition in this respect.
It is accepted practice to circumvent this by applying
the so-called Preissmann slot(1 ). In fact the cross-
sectional geometry of, e.g,. a circular pipe is slightly

changed in order to avoid the occurrence of a transi-
tion between free surface flow and pressurised flow
by adding a slot with a small width (d) on top of the
pipe. In this manner the water level directly follows
from the mass-balance equation. In fig 2.13 this slot
is depicted, the width of the slot d is defined theoreti-
cally by setting the celerity of a disturbance at the
free surface in the slot equal to the celerity of a dis-
turbance in the full-pressurised case.

The celerity of a surface wave is defined by:

hc u gH= ±  in which Hh is the hydraulic depth:

( )
( )h

A h
H

B h
= . Taking a circular cross-section as an

example, A en B are functions of the water depth
(see annexe I); when the conduit is almost completely
filled it is easily seen that the value of c becomes
undefined (2):

2 2

2

lim ( ) 0 lim ( )
lim ( )

h R h R h

h R

B h h h
c h

→ →

→

= ⇒
→ ∞ ⇒ → ∞ eq. 2.19

Applying the Preissmann slot the width of this slot
(d) is defined by stating: cfree surface =cpressurised

Fig. 2.12 - Physical instability. Due to air entrainment the
flow may change between modes I and II in
an unpredictable pattern in time.

 

Fig. 2.13 - The Preismann slot

(1) The idea of this piezometric slot originates from A. Preissmann and was further developed by Cunge & Wagner
(1964) for practical application.

(2) In practice, this celerity is limited to 

1
c

D
K Ed
ρ ρ

=
+ representing the velocity of a pressure wave travelling through

the system. In which r is the density of water in kg/m3, d is the wall thickness of the pipe in m, D is the diameter of the
pipe in m, E is elasticity modulus of the pipe material in N/m 2 and K is the compressibility of water in N/m 2.
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2

2

1
1

D
R K Ed

u g u
D g R

K Ed

ρ
π

δ
ρ ρδ π

 +  + = + ⇒ =
+

(eq. 2.20)

The resulting values for the slot width d though, may
become very small resulting in high values for the
Courant number (i.e. >3 to 4). Therefore, in prac-
tice, the slot width is set to a fixed value of e.g. 0.1-
5% of the diameter of the conduit. This does intro-
duce a discrepancy with reality. As long as no water
hammer problems are studied these, discrepancies
however, are insignificant.

2.6 Water Hammer
Water hammer is a special flow condition in sur-
charged pipes. As stated in section XX the changing
of boundary conditions during normal situation are
so slow that a rigid column approach is allowed.
Certain changes in boundary conditions can be so
fast that the flow doesn’t meet the requirements for
a rigid column approach and the flow must be ana-
lysed in a different way. Most important features are
that the compressibility of the water and the elastic-
ity of the pipe is not neglected, but taken into ac-
count.
Main effect is that storage within the filled pipe is
possible due to the compressibility of the water (more
water in the cross-section) and the elasticity of the
pipe (variation in the cross-section).

A schematic picture of the phenomenon Water Ham-
mer is given in figure 2.14. A stream of water is sud-
denly stopped, resulting in a positive pressure at the
upstream side and a negative pressure at the down
stream side.

Mathematical description

The original constitution equations (De Saint-Venant
are:

Mass balance: 0
A Q
t x

∂ ∂
+ =

∂ ∂
(eq. 2.21)

Continuity equation:

2

0
Q QQ Q p

gA c
t x A x AR

 ∂ ∂ ∂
+ + + = ∂ ∂ ∂ 

(eq. 2.22)

We now have to find relations between the pressure
p and the fluid density ρ and the cross section A.

Relation between pressure and fluid density
The compression modulus of a fluid is defined as:

d
=

dp K
δ δ

(eq. 2.23)

Through the partial differentials of ρ to t and x we
find:

d p p
t dp t K t

d p p
x dp x K x

ρ ρ ρ

ρ ρ ρ

∂ ∂ ∂
= =

∂ ∂ ∂
∂ ∂ ∂

= =
∂ ∂ ∂

(eq. 2.24)

Relation between cross section A and pressure p
Consider a circle shaped cross section of a pipe with
an internal diameter D and a uniform wall thickness
δ. The wall thickness is relatively small compared to
the diameter (δ << D) (See figure XX). A small pres-
sure increase in the pipe (dp) will increase the posi-
tive tension of dσ. The increase will meet the equa-
tion 2 δ* dσ = D*dp

D

D + 2d ˜  D dsds

dp
d

D

D + 2d ˜  D dsds

dp
d

Fig. 2.15 - Cross section pressurised pipe

vv

Fig. 2.14 - Schematic of water hammer
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The increase in the wall tension dó will induce an
increase of the length of the pipe wall P = πD and
thus the diameter D. According to Hooke’s law this
can be expressed as:

dD dP d
D P E

σ
= = (eq. 2.25)

This leads to

2
dD D dp
D Eδ

= (eq. 2.26)

Because A is proportional to D2

2
dA dD D dp
A D Eδ

= = (eq. 2.27)

and

dA D
A

dp Eδ
= (eq. 2.28)

With this the partial differentials of A to t and x can

be expressed in 
p
t

∂
∂

 and 
p
x

∂
∂

:

A dA p D p
A

t dp t E t
A dA p D p

A
x dp x E x

δ

δ

∂ ∂ ∂
= =

∂ ∂ ∂
∂ ∂ ∂

= =
∂ ∂ ∂

(eq. 2.29)

Mass balance

The mass balance of a pipe is

( ) ( ) 0A Au
t x

ρ ρ
∂ ∂

+ =
∂ ∂

(eq. 2.30)

Complete elaboration of this equation gives:

0
A A u

A u A uA
t t x x x
ρ ρ

ρ ρ ρ
∂ ∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂ ∂

(eq. 2.31)

Substituting all equations describing the variation of
ρ and A with p followed by a division by A gives:

0
D p D p u

u
K E t K E x x
ρ ρ ρ ρ

ρ
δ δ

∂ ∂ ∂   + + + + =   
∂ ∂ ∂   

(eq. 2.32)

If we define c like:  2

1 D
c K E

ρ ρ
δ

= +  this will become

2 2

1
0

p u p u
c t c x x

ρ
∂ ∂ ∂

+ + =
∂ ∂ ∂

(eq. 2.33)

The value of c is equal to the speed of pressure wave
in the specific circumstances.
In a non-elastic pipe E becomes ∞. If the fluid is
non-compressible than also the value k becomes ∞,
leaving c to go to infinity as well. Meaning that the

continuity equation derives to 0
u
x

∂
=

∂
, as is valid

when the rigid column approach is applied. The
boundaries towards E and K imply a rigid column,
both for the fluid and the pipe wall.

The formula can also be written as

2 0
p p u

u c
t x x

ρ
∂ ∂ ∂

+ + =
∂ ∂ ∂

With 
p p dp

u
t x dt

∂ ∂
+ =

∂ ∂
 this becomes:

2 0
dp u

c
dt x

ρ
∂

+ =
∂

(eq. 2.34)

Rewriting this using the piezometric level

p
z

g
ϕ

ρ
= +

dp
g g u

dt t t x
ϕ ϕ ϕ

ρ ρ
∂ ∂ ∂ = = + ∂ ∂ ∂ 

gives

2

0
c u

t g x
ϕ∂ ∂

+ =
∂ ∂

(eq. 2.35)
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Equation of movement
The equation of movement is

2

1
sin 0

u uu u p
u g g

t x x C R
β

ρ
∂ ∂ ∂

+ + − + =
∂ ∂ ∂

(eq. 2.36)

with β the slope of the pipe. This can be rewritten
using the piezometric level instead of a pressure
level: ϕ = z + h = z + p/ρg:

1 p
t g t
ϕ

ρ
∂ ∂

=
∂ ∂

1
sin

p
x g x
ϕ

β
ρ

∂ ∂
= −

∂ ∂

leading to

2 0
u uu u

u g g
t x x C R

ϕ∂ ∂ ∂
+ + + =

∂ ∂ ∂
(eq. 2.37)

In the case of water hammer the friction can be ne-

glected as well as the convective term 
u
x

∂
∂

, which

leaves the equation of movement to

0
u

g
t x

ϕ∂ ∂
+ =

∂ ∂
 or 

1
0

u
g t x

ϕ∂ ∂
+ =

∂ ∂ (eq. 2.38)

Examples of water hammer

The water hammer formulas describe what happens
when the pressure and/or volume flow boundaries
vary so quickly that the rigid column approach is not
valid any more. This is the case when valves are
closed, pumps are started or stopped (planned or
unplanned in the case of pump trip) or any other sud-
den change in pressure or flow.

The set of equations is:

1
0

u
g t x

ϕ∂ ∂
+ =

∂ ∂  and 

2

0
c u

t g x
ϕ∂ ∂

+ =
∂ ∂

(eq. 2.39)

The general solution of this set of equations is

( ) ( ) 0F x ct f x ctϕ ϕ= + + − + (eq. 2.40)

( ) ( ) 0

g
u F x ct f x ct u

c
= − + + − +   (eq. 2.41)

with ϕ0 and u0 are the initial pressure level and ve-
locity at t = 0.
These equations are called the characteristic equa-
tions. Basically these equations describe the move-
ment of the pressure wave  during the time step ∆t
over a distance c* ∆t along the pipe. The function
ϕ=f(x-ct) moves in positive direction and the func-
tion ϕ=F(x+ct) moves in negative direction.

These formulas can be used to estimate the maxi-
mum and minimum pressures as a result of water
hammer and give an indication whether special
measures are necessary to avoid too high or too low
pressures. Too low pressure might induces cavita-
tion or when thin wall pipes are used a implosion of
the pipe. An example of this is given in figure 2.16.

An example for calculation of the maximum and
minimum pressure in a pipe as result of closure of a
valve will be elaborated

Starting point are the characteristic equations:

( ) ( ) 0F x ct f x ctϕ ϕ= + + − + (eq. 2.42)

Fig. 2.16 - Imploded tank
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( ) ( ) 0

g
u F x ct f x ct u

c
= − + + − +   (eq. 2.43)

At the moment the valve closes the forward moving
function becomes zero: f(x-ct) = 0. This transforms
the equation to:

( ) 0F x ctϕ ϕ= + + (eq. 2.44)

( ) 00
g

u F x ct u
c

= = − + +   (eq. 2.45)

or

0
0

c u
g

ϕ ϕ
⋅

− = (eq. 2.46)

If the pump would have been stopped, meaning that
the backward moving function becomes zero would
have resulted in

0
0

c u
g

ϕ ϕ
⋅

− = − (eq. 2.47)

Both these functions are called the Joukovsky equa-
tions. The values for the pressure that are calculated
using this function is the absolute maximum or mini-
mum that can occur during valve closure or pump
trip. In practise these pressures will be lower, be-
cause valves don’t close instantaneously and pumps
have an inertia causing them to continue working
during some seconds. Another aspect is the value of
c, the speed of pressure wave movement. When the
water contains gas as is possible in sewerage, the
value will be much lower. Also the characteristics of
the pipe determine the value of c. A less flexible pipe
will induce a higher maximum pressure.

Example
The maximum pressure for two types of pipe will be
considered at the event of quick closure of a valve.
Assume a pipe with a length of 5000 meter a diam-
eter of 1000 mm, made of steel with a wall thickness
δ of 15 mm. The elasticity of steel is 2,2*105 N/m2

and the compressibility of water Kwater = 2,05 * 105 N/
m2.

2

1 1
 1390 m/s

1 1

D
c

c K E D
K E

ρ ρ
δ

ρ δ

= + ⇒ = =
 +  

Fig. 2.17 - Pressure relieve valves

With an initial velocity of the water of 1 m/s the addi-
tional pressure will be

0 1390*1
139 mWc

10
c u

g
⋅

= =

Probably this pressure is inadmissible and counter
measures have to be taken. One of the most simple
measures is to avoid the quick closure of the valve.
The deceleration of the fluid is smoother and water
hammer can be avoided. To quantify this the follow-
ing calculation can be made. The pressure wave is
formed during the last 20% of the actual closing of
the valve. In this period the deceleration is largest.
High pressures (water hammer) can be avoided if
the pressure wave is allowed to travel from the valve
to the upstream boundary and back, during the last
20% of the closure interval of the valve. In the last
20 % the actual deceleration will take place, causing
the possible water hammer.
With a length of 5000 meter between the valve and
an upstream boundary this will take 2* 5000/1390 =
7 seconds. An upstream boundary is for instance a
water tower or a connection to a more looped net-
work. Essential is that the pressure can be relieved
by relatively small storage capacity, a pressure re-
lieve valve (figure 2.17) or a larger network.

Consider another pipe of a more flexible material
like PVC. The length is 5000 meter; the diameter is
630 mm (largest common available diameter) and a
wall thickness of 25 mm (PN10, see also design ex-
ercise). The elasticity of the material is 2,0*109 N/m2

and the compressibility of the water is 2,05*105 N/
m2. The pressure wave speed is in this case 270 m/
s and the maximum extra pressure is 27 mWc with
an initial velocity of 1 m/s.
Although this extra pressure is probably allowable in
this situation, also the negative pressure wave at the
downstream side of the valve has to be considered.
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This negative pressure is larger than atmospheric
and can cause cavitation. In this case the damp ten-
sion is sub seeded and the water ‘boils’ with all nega-
tive implications of cavitation (see paragraph XX).
Closing the last 20% of the pipe in a time the pres-
sure wave can travel from the valve to the upstream
boundary ands back again will be a solution as well.
This will take 2*5000/270 = 37 seconds.

Water hammer prevention
To prevent the high prssure as result of water ham-
mer for instance a buffer tower can be used. The
principle is the same as the wind kettel. Figure 2.18
shows the effect of a buffer tower in combination
with a pump trip. Often water towers are used like
this. Figure 2.19 shows the effect of a buffer tower
when a valve is quickly closed.

2.7 Summary
Three types of one-dimensional flow can be distin-
guished within the field of water transport through
pipes:
o Surcharged pressurised flow:
§ Rigid column approach
§ Darcy Weissbach
§ Time independent
§ Friction loss dominant
§ Drinking water transport, sewerage water

Fig. 2.18 - Buffer tower and pump trip

Fig. 2.19 - Buffer tower and valve

o Open channel flow
§ Free water surface
§ Time dependant
§ Storage dominant
§ Storm water, urban drainage and sewerage

o Water hammer
§ Special case of pressurised flow
§ Fast changing boundaries, time dependent
§ Special analysis
§ Risk approach
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