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Introduction to wind energy

Relevant to offshore wind farm design

Offshore Wind Farm Design

Michiel Zaaijer

DUWIND
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Overview

• Rotor aerodynamics

• Power and load control

• Energy production

• Turbine technology

• Multi-MW turbines turbines
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Rotor aerodynamics
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Determining power and loads

0. The approach
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Blade element – momentum method

1. Momentum balance

Macroscopic perspective

Loads from conservation laws

2. Blade elements

Local perspective

Loads from lift and drag≡



2007-2008

6

Determining power and loads

1. Momentum balance
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Mass per second through A:

Mass flow m = ρρρρ U A

Substitute:

Momentum flow m U = ρρρρ U2 A
Energy flow ½ m U2 = ½ρρρρ U3 A

Mass, momentum and energy flows
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At actuator disc:

Axial rotor force (thrust) D
Power extraction P

Actuator disc – represents rotor

D
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Conservation laws

Thrust ≡ change in momentum

D = m (U-Ve)

Power extracted at rotor disc

D V1 = m V1 (U- Ve)

Kinetic energy loss in flow

½ m (U2-Ve
2) =

½ m (U-Ve) (U+Ve)

Power ≡ Energy loss

V1 = ½ (U+ Ve)
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Define induction factor
(dimensionless)

a = (U-V1)/U

Rearrange

V1= U (1-a)

Substitute on previous page

Ve = U (1-2a)

Dimensionless induction factor

U U(1-a) U(1-2a)
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Mass flow

m = ρ V1 A = ρ U (1-a) A

Thrust

D = m (U-Ve) = ½ρ U2 A 4a(1-a)

Power

P = ½ m (U2-Ve
2)

= ½ m (U-Ve)(U+Ve) = ½ρ U3 A 4a(1-a)2

Substitution with induction factor
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Define

D = ½ρ U2 A 4a(1-a) = ½ρ Cd U2 A 
P = ½ρ U3 A 4a(1-a)2 = ½ρ Cp U3 A

Dimensionless coefficients become

Cd = 4 a (1-a)
Cp = 4 a (1-a)2

Dimensionless thrust and power
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The Betz optimum:
Cp is maximum when

0pdC

da
=

Result

a = 1/3

CP,max = 16/27 ≈ 0.59

Intermezzo: Optimum power

Cd

Cp

a
Cd = 8/9
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Assumptions
1. Annuli don’t interact

- Induction factor ‘a’ independent of other annuli
- No flow from one annulus to another)

2. No tangential change within one annulus
- Induction factor ‘a’ constant over annulus

Divide stream tube in concentric annuli, parallel to flow

Annular approach
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Mass flow

m = ρ V1 A = ρ U (1-a) A
dm = mass per annulus = ρ U (1-a) 2πr dr

Thrust

D = m (U-Ve) = ½ρ U2 4a(1-a) A
dD = thrust per annulus = ½ρ U2 4a(1-a) 2πr dr

Power

P = ½ m (U2-Ve
2) = ½ρ U3 4a(1-a)2 A

dP = power per annulus = ½ρ U3 4a(1-a)2 2πr dr

Mass, thrust and power per annulus
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Determining power and loads

2. Blade elements of a rotor
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Consider cross-section of blade,

perpendicular to blade axis,

with velocity vectors

U(1-a) and Ωr

U(1-a)

Ωr

Cross-section of blade
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Ωr

Vres

U(1-a)

r

d

l

θ
φ α

θ = blade twist angle
φ = angle of inflow
α = angle of attack

l = lift ⊥ Vres

d = drag // Vres

Ωr = radial velocity
U(1-a) = local wind speed
Vres = resultant speed

Rotor plane

Aerofoil forces and velocities



2007-2008 19

cUCl l
2

2

1 ρ⋅= cUCd d
2

2

1 ρ⋅=

Lift coefficient Drag coefficient

Lift and drag (2-dimensional flow)
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Attached flow

Separated flow
(stalled)

after Prandtl and Wieselsberger

Flow regimes
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dD = N ( Cl ½ ρ Vres
2 cos(φ) + Cd ½ ρ Vres

2 sin(φ) ) c dr

dD = N ( l cos(φ) + d sin(φ) ) dr

dD = N ( Cl ½ ρ (Ωr)2 + Cd ½ ρ (U(1-a))2 ) c dr

N = Number of blades

dP = N ( l sin(φ) – d cos(φ) ) Ωr dr

dP = N ( Cl ½ ρ (U(1-a))2 – Cd ½ ρ (Ωr)2 ) c Ωr dr

Thrust and power

Contribution to thrust dD per blade element dr

Contribution to power dP per blade element dr
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Determining power and loads

3. Blade element – momentum method: BEM
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Combining two theories

Ωr

Vres

U(1-a)

dθ
φ α

rl

Momentum balance Blade elements

dD = N ( Cl ½ ρ (Ωr)2

+ Cd ½ ρ (U(1-a))2 ) c dr
dD = ½ρ U2 4a(1-a) 2πr dr

When we assume dDmomentum balance= dDblade elements

� Two equations – two unknowns: dD and a
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Choose an initial value for ‘a’.

Use this to calculate angle of attack and from this Cl and Cd

Calculate axial aerodynamic force on blade element: dD

From dD follows a new value for ‘a’ with momentum theory

Continue until ‘a’ reaches a constant value.

For each annulus:

Solving induction factor with BEM
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Solving loads and power with BEM

P = ∫ N ( Cl ½ ρ (U(1-a))2 – Cd ½ ρ (Ωr)2 ) c Ωr dr
R

0

D = ∫ N ( Cl ½ ρ (Ωr)2 + Cd ½ ρ (U(1-a))2 ) c dr
R

0

Thrust on rotor

Power on main shaft

Once ‘a’ is known for all annuli, integrate blade elements
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Additions to BEM

• Tip losses / infinite number of blades

• Wake rotation (tangential forces and velocities)

Included in all state-of-the-art calculation tools 
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Characterising rotor aerodynamics
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Example

λdesign= 8
Cp,max= 0.46

Stall region Small α

+Define tip speed ratio

λ = ΩR / U

The CP - λ curve

α
α

(Low λ = low Ω or high U)
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Full span pitch
θnew, local= θold, local+ θpitch

Pitch to stall
(increase α)

Pitch to vane
(decrease α)

Cp-λ curves for different pitch

α α
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Wind turbine control

Aerodynamic aspects
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Power and thrust curves
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V

~V3 ~Ablade·V
2

T

~Arotor·V
2

P

~V-1

P= T·V = Constant

“Ideal” Power and thrust curves
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VVcut-out

P

VratedVcut-in

Partial load

Full load Idle / Stand-still

Terminology for regions of operation
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Partial load – power control
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λdesign= 8
Cp,max= 0.46

P = Cp ½ ρ U3 A

λ = ΩR/U

P ~ U3

�Cp(λ) = Cp,max

�λ = λdesign

�Ω ~ U

+

Variable speed!
(Fixed pitch)

Ideal power control – variable speed
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λdesign= 8
Cp,max= 0.46

P= Cp ½ ρ U3 A

λ = ΩR/U

Decreasing
wind speed

P ≤ Pvariable speed

Cp,maxonly at one 
wind speed

Increasing
wind speed

Constant speed power control



2007-2008 37

Ω constant

λ constant

Power, RPM, wind speed

Power (kW)

Ω (RPM)

Wind speed (m/s)

= Cp ½ ρ U3 A

= (60 / 2π) λ U / R

Determined from
Cp – λ curve
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P

Vcut-in

Variable speed: ~V3

Constant speed: ≤~V3

Constant speed design point:
Ω = Ωdesign; λ = λdesign; Cp = Cp,max

Power difference (partial load)
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Full load – power control
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Pitch to vane:
θ� => Cp�

U� => Cp�

Total: Cp�

Passive stall:
U� => Cp�

Active stall/
Pitch to stall:
θ� & U�

=> Cp�

Ω = constant:
U� => λ�

Control options (constant speed)
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Ω constant

Power (kW)

Ω (RPM)

Passive stall control

‘Natural’ power 
limitation at high 
wind speeds
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Comparison of power curves
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Identical stall-turbines
in Bockstigen wind farm

Passive stall power curves
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Pitch to vane power curve
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Full load - Loads
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Non-ideal thrust of stall control

V

T Stall control:
� High drag
� Higher lift compensates
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Ωr

Vres

U(1-a)

r

d

l

θ
φ α

Rotor plane
d

Pitch to vane:
U� => Lift�
θ� => Lift�
Total: Lift�

• Quick
• Slow
• Slow

Dynamic loads of pitch control
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Dynamics thrust of pitch control

V

T
Response
to gust or pitch failure
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Load alleviation: gust response

Use rotor as a flywheel
� Increase speed to absorb energy
� Decrease speed to release energy
� Reduce torque variations & peaks
� Reduce power variations

� Axial loads are NOT reduced!
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V

TP

Vrated

Start pitch control in partial load
Stop constant λ control in partial load
Vratedgoes up and is less clear

Load alleviation: Peak shaving
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Energy production
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De Bilt
observations  

1961/1970
1971/1980

Example: Wind speed 
between 6 and 7m/s
� 9%of the time

Wind speed distribution
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Weibull fit

Weibull distribution

De Bilt

k

a

V
k e

a

V

a

k

a

V
f

)(1)()(
−− ⋅⋅=

With
k = shape factor
a = scale factor
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k=1

k=2

k=3

k=4

Weibull distribution: examples

a = 1
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)
1

1(
k

V
a avg

+Γ
=

∫
∞

−−=Γ
0

1)( ββα βα de

Shape factor vs average wind speed 

1

1 0.434
(1 ) 0.568

k

k k
 Γ + ≈ + 
 

With
a      = Weibull scale factor
Vavg = Annual average wind speed
Γ = Gamma function

Example

≈ 0.886

� Vavg > a

1
(1 )

k
Γ +
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Wind speed vs height

Power law

( ) ( )ref
ref

h
v h v h

h

α
 

= ⋅  
 

Offshore  α ≈ 0.08 – 0.14
Guidelineα = 0.11 
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T
(hours/
(m/s))

Power 
(kW)

Contribution to energy (kWh/(m/s))

v (m/s)

v (m/s)

x =

Calculation of annual yield

Total area = energy 
production in one year

∫ ⋅=
co

ci

V

V

elTurbine dVVfVPTE )()(
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Energy content

Ideal turbine

Turbine with
pitch control

Ω is constant
(exaggerated)

λ is constant

Ω is constant

x

P

V

V

Turbine with
stall control

E

Energetic efficiency (1)
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Vcut-in : Hardly affects E, only interest is public perception
Speed control: Some effect on E
Pitch/stall : Some effect on E
Vcut-out : Limited effect on E, primarily determined by loads
Vrated : Has largest influence on E

Energetic efficiency (2)
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Yearly energy production

The same yearly production would be generated in an equivalent 
amount of time Tequivalentrunning at full power:

equivalentratedTPE =

year

equivalent

T

T
cf = is called the capacity factor

∫ ⋅=
co

ci

V

V

el dVVfVPTE )()(

Capacity factor (1)
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Capacity factor (2)

cf ≈ 1

cf ≈ 0

A high capacity factor is not necessarily good!
There is an economic optimum
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First generation turbines: cf≈ 0.2
Present generation: cf≈ 0.25 - 0.3
Offshore wind farms: cf ≈ 0.35 - 0.45

cf = total electricity consumption ≈ 0.5
maximum electricity production ⋅ 8760

(8760 is the number of hours in a year)

For comparison
The capacity factor of all the power generation ability mounted in 
the Netherlands :

Characteristic values for cf
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Energy losses

Additional farm relatedlosses:

• Availability of the turbines

• Availability of the electrical infrastructure

• Aerodynamic farm losses (wakes)

• Transformation and transmission losses

( ) ( ) Drive train Generator ConversionElectrical Aero
P V P V η η η= ⋅ ⋅ ⋅

Sources
• Models
• Guestimates
(literature)

P-V curve of manufacturer includes these losses
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Energy yield =
number of hours/year * installed power * capacity factor

e.g.: 8760h * 108 MW * 0.35≈ 331GWh / y
for offshore wind park Egmond aan Zee
(Average Dutch household: 3.2MWh / y)

Only applicable for order of magnitude guess !!
Wind speed distribution (based on data) indispensable

Estimating energy production (1)
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P = ⅛ ρ Cp V3 π D2

use
D and estimate of Cp
or
Pratedand
Vrated≈ 10-12 m/s

Estimating energy production (2a)

V (m/s)

Estimate power curve

Vcut-out
≈ 25-30

P

Vrated
≈ 10-12

Vcut-in
≈ 3-5

Prated
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Equal
(simple model)

Estimating energy production (2b)

Estimate wind speed distribution

Weibull scale
at reference height

Average wind speed
at reference height

Weibull shape factor
at reference height

Weibull shape factor
at hub height

Weibull scale factor
at hub height

Average wind speed
at hub height

Data at reference height

Power law
Gamma function



2007-2008

66

Turbine technology
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Blades
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Blades

Composite
One-piece
Flexible
Skin / spar
T-bolts

Picture source: LM
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Large blades: pre-bending in mould

Blade pitched 90º
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Overview of the drive train
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yaw gear

rotor bearing

generator
brake gearbox

generator shaft
with coupling

main shaft

yaw ring

hub

Drive train (with gearbox)



2007-2008 72

Zephyros 2 MW turbine

Drive train without gear: direct drive
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1-stage gearbox, 
medium speed 
generator, direct hub-
gear-generator 
connections

Multibrid

Compact drive train
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Gearbox & generator

Clipper Liberty
2.5 MW
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Hub
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Hub
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Hub and cover

Cast-iron hub for rotor loads

Composite 
aerodynamic cover



2007-2008

78

Main shaft and bearings
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Double and single bearings

Rotating main shaft

Direct connection to hub
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Bearings on fixed axle pin
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Gearbox
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Parallel Planetary

Simple
Compact for high power

type of transmission
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Gearbox – planetary & parallel stages
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Generator
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Doubly fed generator

5 MW-class from ABB

ASM1:n

ac

dc ac

dc

Partly variable speed
Fed rotor
Inverters needed
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Direct drive (synchronous) generator

ENERCON 4.5 – 6 MW

dc
SM

dc

dc

ac

Full variable speed
Rotor windings for magnetic field
Inverters needed

Low speed:
(Very) big diameters needed
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Permanent magnet generator

dc
SM

dc

dc

ac

Full variable speed
No rotor windings
Inverters needed
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Brakes
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• brake located on slow shaft
(rotor shaft has double bearings)

• brake located on fast shaft

Location of (fail-safe) brakes

Brakes are actively released (hydraulics)
and passively clamped (springs)
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- Each blade can pitch individually to brake
- Only mechanical parking brake

Aerodynamic brake
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Bedplate / Main frame
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Traditional bedplate

Cast-iron mainframe 
for rotor loads

Welded frame to carry 
other components
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Compact frames
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Yaw system
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Yaw system

Bearing
Engines
Gearboxes
Yaw brakes

Cable twist counter &
pull switch (redundancy)
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Control

• Variable speed (restricted in US through patent)

• Pitch control

• Individual pitch

• Smart rotors

Future advances

State of the art
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Multi-MW turbines in the market

≥ 5MW (prototypes)

GE 3.6 – 3.6s

Enercon E-112

REpower 5M

Multibrid M5000

Siemens SWT-3.6-107
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GE 3.6 – 3.6s (3.6 MW)

First prototype: April 2002

Rotor: 104 m

Gearbox: 3-stage (PPE)

Generator: Asynchronous

Doubly-fed

Inverter: Partial (30%)
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Enercon E-112 (4.5 MW)

First prototype: August 2002

Rotor: 114 m

Gearbox: No

Generator: Synchronous

Wound rotor

Inverter: Full (100%)
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REpower 5M (5 MW)

First prototype: November 2004

Rotor: 126 m

Gearbox: 3-stage (PPE)

Generator: Asynchronous

Doubly-fed

Inverter: Partial (30%)
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Multibrid M5000 (5MW)

First prototype: December 2004

Rotor: 116 m

Gearbox: 1-stage (Planet)

Generator: Synchronous

Permanent Magnet

Inverter: Full (100%)
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Siemens SWT-3.6-107 (3.6 MW)

First prototype: December 2004

Rotor: 107 m

Gearbox: 3-stage (PPE)

Generator: Asynchronous

Squirrel cage

Inverter: Full (100%)
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Future developments

• Announced by leading manufacturers

• Vestas V120 (4.5 MW)

• Upgrade Enercon E-112 � E-126 (?? MW)

• Developers involvement

• Bard Engineering – Bard VM (5 MW)

• Econcern – DarwinD (4.5 MW)

• No end to scale and concept evolution


