Introduction to wind energy

Relevant to offshore wind farm design

Offshore Wind Farm Design

Michiel Zaaijer

2007-2008

1

DUWIND

Delft University of Technology

Overview

- Rotor aerodynamics
- Power and load control
- Energy production
- Turbine technology
- Multi-MW turbines turbines

Rotor aerodynamics

2007-2008

Delft University of Technology

Determining power and loads

0. The approach

2007-2008

Delft University of Technology

Blade element – momentum method

1. Momentum balance2. Blade elementsMacroscopic perspectiveLocal perspectiveLoads from conservation lawsLoads from lift and drag

Determining power and loads

1. Momentum balance

2007-2008

Delft University of Technology

Mass, momentum and energy flows

Actuator disc – represents rotor

2007-2008

Conservation laws

Thrust \equiv change in momentum

 $D = m (U-V_e)$

Power extracted at rotor disc

 $D V_1 = m V_1 (U - V_e)$

Kinetic energy loss in flow

 $\frac{1}{2} m (U^2 - V_e^2) =$ $\frac{1}{2} m (U - V_e) (U + V_e)$

Power \equiv Energy loss

 $V_1 = \frac{1}{2} (U + V_e)$

2007-2008

Dimensionless induction factor

Define induction factor (dimensionless) $a = (U-V_1)/U$ Rearrange $V_1 = U (1-a)$ Substitute on previous page $V_e = U (1-2a)$

Substitution with induction factor

Mass flow

 $m = \rho V_1 A = \rho U (1-a) A$

Thrust

D = m (U-V_e) =
$$\frac{1}{2} \rho U^2 A 4a(1-a)$$

Power

P =
$$\frac{1}{2} m (U^2 - V_e^2)$$

= $\frac{1}{2} m (U - V_e)(U + V_e) = \frac{1}{2} \rho U^3 A 4a(1-a)^2$

Dimensionless thrust and power

Define

Dimensionless coefficients become

$$C_d = 4 a (1-a)$$

 $C_p = 4 a (1-a)^2$

2007-2008

Intermezzo: Optimum power

The Betz optimum: C_p is maximum when

$$\frac{dC_p}{da} = 0$$

Result

a = 1/3

$$C_{P,max} = 16/27 \approx 0.59$$

 $C_d = 8/9$

2007-2008

Annular approach

Divide stream tube in concentric annuli, parallel to flow

Assumptions

- 1. Annuli don't interact
 - Induction factor 'a' independent of other annuli
 - No flow from one annulus to another)
- 2. No tangential change within one annulus
 - Induction factor 'a' constant over annulus

2007-2008

Mass, thrust and power per annulus

Mass flow

 $m = \rho V_1 A$ dm = mass per annulus = ρU (1-a) $2\pi r dr$

 $= \rho U (1-a) A$

Thrust

 $D = m (U-V_e)$ $= \frac{1}{2} \rho U^2 4a(1-a) A$ dD = thrust per annulus = $\frac{1}{2} \rho U^2 4a(1-a) 2\pi r dr$

Power

P = $\frac{1}{2}$ m (U²-V_e²) = $\frac{1}{2}$ ρ U³ 4a(1-a)² A dP = power per annulus = $\frac{1}{2}\rho U^3 4a(1-a)^2 2\pi r dr$

Determining power and loads

2. Blade elements of a rotor

2007-2008

Delft University of Technology

Cross-section of blade

Consider cross-section of blade, perpendicular to blade axis,

with velocity vectors

U(1-a) and Ωr

2007-2008

Lift and drag (2-dimensional flow)

Lift coefficient

Drag coefficient

2007-2008

Attached flow

Separated flow (stalled)

Thrust and power

Contribution to thrust dD per blade element dr

 $dD = N (1 \cos(\phi) + d \sin(\phi)) dr \qquad N = \text{Number of blades}$ $dD = N (C_1 \frac{1}{2} \rho V_{res}^2 \cos(\phi) + C_d \frac{1}{2} \rho V_{res}^2 \sin(\phi)) c dr$ $dD = N (C_1 \frac{1}{2} \rho (\Omega r)^2 + C_d \frac{1}{2} \rho (U(1-a))^2) c dr$

Contribution to power dP per blade element dr $dP = N (1 \sin(\phi) - d \cos(\phi)) \Omega r dr$ $dP = N (C_1 \frac{1}{2} \rho (U(1-a))^2 - C_d \frac{1}{2} \rho (\Omega r)^2) c \Omega r dr$

Determining power and loads

3. Blade element – momentum method: BEM

2007-2008

Delft University of Technology

Combining two theories

2007-2008

Solving induction factor with BEM

For each annulus:

Choose an initial value for 'a'.

 \sum Use this to calculate angle of attack and from this C₁ and C_d

Calculate axial aerodynamic force on blade element: dD

From dD follows a new value for 'a' with momentum theory

Continue until 'a' reaches a constant value.

2007-2008

Solving loads and power with BEM

Once 'a' is known for all annuli, integrate blade elements

Thrust on rotor

$$D = \int_{0}^{R} N \left(C_{1} \frac{1}{2} \rho \left(\Omega r \right)^{2} + C_{d} \frac{1}{2} \rho \left(U(1-a) \right)^{2} \right) c dr$$

Power on main shaft

$$P = \int_{0}^{R} N (C_{1} \frac{1}{2} \rho (U(1-a))^{2} - C_{d} \frac{1}{2} \rho (\Omega r)^{2}) c \Omega r dr$$

Additions to BEM

- Tip losses / infinite number of blades
- Wake rotation (tangential forces and velocities)

Included in all state-of-the-art calculation tools

Characterising rotor aerodynamics

2007-2008

Delft University of Technology

The $C_P - \lambda$ curve

Cp-λ curves for different pitch

Wind turbine control

Aerodynamic aspects

2007-2008

Delft University of Technology

Power and thrust curves

2007-2008

Delft University of Technology

"Ideal" Power and thrust curves

Terminology for regions of operation

Partial load – power control

2007-2008

Delft University of Technology

Ideal power control – variable speed

Constant speed power control

Power, RPM, wind speed

Power difference (partial load)

Full load – power control

2007-2008

Delft University of Technology

Control options (constant speed)

2007-2008

Passive stall control

Passive stall power curves

Comparison of power curves

2007-2008

Pitch to vane power curve

Output curve for Vestas V80 - 2,0 MW

Vind velocity m/s

43

2007-2008

Full load - Loads

2007-2008

Delft University of Technology

Non-ideal thrust of stall control

Dynamic loads of pitch control

Dynamics thrust of pitch control

Load alleviation: gust response

Use rotor as a flywheel

- \rightarrow Increase speed to absorb energy
- \rightarrow Decrease speed to release energy
- \rightarrow Reduce torque variations & peaks
- \rightarrow Reduce power variations
- \rightarrow Axial loads are NOT reduced!

Load alleviation: Peak shaving

2007-2008

Energy production

2007-2008

Delft University of Technology

Wind speed distribution

Weibull distribution

Weibull distribution: examples

2007-2008

Shape factor vs average wind speed

$$a = \frac{V_{avg}}{\Gamma(1 + \frac{1}{k})}$$

With

a = Weibull scale factor

 V_{avg} = Annual average wind speed

 Γ = Gamma function

$$\Gamma(\alpha) = \int_{0}^{\infty} \beta^{\alpha - 1} e^{-\beta} d\beta$$
$$\Gamma(1 + \frac{1}{k}) \approx \left(0.568 + \frac{0.434}{k}\right)^{\frac{1}{k}}$$

Example

$$\Gamma(1 + \frac{1}{k}) \approx 0.886$$

$$\Rightarrow V_{avg} > a$$

2007-2008

Wind speed vs height

Offshore $\alpha \approx 0.08 - 0.14$ Guideline $\alpha = 0.11$

2007-2008

Calculation of annual yield

Energetic efficiency (2)

V_{cut-in} Speed control Pitch/stall V_{cut-out} V_{rated}

V_{cut-in} : Hardly affects E, only interest is public perception Speed control: Some effect on E

- Pitch/stall : Some effect on E
 - : Limited effect on E, primarily determined by loads
 - : Has largest influence on E

2007-2008

Capacity factor (1)

Yearly energy production $E = T \int_{V_{ci}}^{V_{co}} P_{el}(V) \cdot f(V) dV$

The same yearly production would be generated in an equivalent amount of time $T_{equivalent}$ running at full power:

$$E = P_{rated} T_{equivalent}$$

 $cf = \frac{T_{equivalent}}{T_{year}}$ is called the capacity factor

2007-2008

Capacity factor (2)

 $cf \approx 0$

 $cf \approx 1$

A high capacity factor is not necessarily good! There is an economic optimum

2007-2008

Characteristic values for cf

First generation turbines: $cf \approx 0.2$ Present generation: $cf \approx 0.25 - 0.3$ Offshore wind farms: $cf \approx 0.35 - 0.45$

For comparison

The capacity factor of all the power generation ability mounted in the Netherlands :

cf = $\frac{\text{total electricity consumption}}{\text{maximum electricity production} \cdot 8760} \approx 0.5$

(8760 is the number of hours in a year)

2007-2008

Energy losses

$$P(V)_{\text{Electrical}} = P(V)_{\text{Aero}} \cdot \eta_{\text{Drive train}} \cdot \eta_{\text{Generator}} \cdot \eta_{\text{Conversion}}$$

P-V curve of manufacturer includes these losses

Additional farm related losses:

- Availability of the turbines
- Availability of the electrical infrastructure
- Aerodynamic farm losses (wakes)
- Transformation and transmission losses

Sources

- Models
- Guestimates (literature)

Estimating energy production (1)

Energy yield = number of hours/year * installed power * capacity factor

e.g.: 8760 h * 108 MW * $0.35 \approx 331$ GWh / y for offshore wind park Egmond aan Zee (Average Dutch household: 3.2 MWh / y)

Only applicable for order of magnitude guess !! Wind speed distribution (based on data) indispensable

2007-2008

Estimating energy production (2a)

Estimating energy production (2b)

Estimate wind speed distribution

Turbine technology

2007-2008

Delft University of Technology

Blades

2007-2008

Delft University of Technology

Blades

2007-2008

Large blades: pre-bending in mould

2007-2008

Overview of the drive train

2007-2008

Delft University of Technology

Drive train (with gearbox)

Drive train without gear: direct drive

2007-2008

Compact drive train

2007-2008

Gearbox & generator

2007-2008

Hub

2007-2008

Delft University of Technology

Hub

Hub and cover

Composite aerodynamic cover

Cast-iron hub for rotor loads

77

Main shaft and bearings

2007-2008

Delft University of Technology

Double and single bearings

2007-2008

Bearings on fixed axle pin

2007-2008

Gearbox

2007-2008

Delft University of Technology

type of transmission

Parallel

Planetary

Simple

Compact for high power

2007-2008

Gearbox – planetary & parallel stages

Generator

2007-2008

84

Delft University of Technology

Doubly fed generator

Partly variable speed Fed rotor Inverters needed

2007-2008

Direct drive (synchronous) generator

ENERCON 4.5 – 6 MW

Full variable speed Rotor windings for magnetic field Inverters needed

Low speed: (Very) big diameters needed

Permanent magnet generator

Full variable speed No rotor windings Inverters needed

2007-2008

Brakes

2007-2008

88

Delft University of Technology

Location of (fail-safe) brakes

• brake located on slow shaft (rotor shaft has double bearings)

• brake located on fast shaft

Brakes are actively released (hydraulics) and passively clamped (springs)

Aerodynamic brake

- Each blade can pitch individually to brake
- Only mechanical parking brake

2007-2008

Bedplate / Main frame

2007-2008

Delft University of Technology

Traditional bedplate

Cast-iron mainframe for rotor loads

Welded frame to carry other components

2007-2008

Yaw system

2007-2008

Delft University of Technology

Yaw system

@ 1998 www.WINDPOWER.org

© 1998 www.WINDPOWER.org

Bearing Engines Gearboxes Yaw brakes Cable twist counter & pull switch (redundancy)

Control

State of the art

- Variable speed (restricted in US through patent)
- Pitch control

Future advances

- Individual pitch
- Smart rotors

Multi-MW turbines in the market

≥ 5MW (prototypes)

GE 3.6 – 3.6s Enercon E-112 REpower 5M Multibrid M5000 Siemens SWT-3.6-107

2007-2008

Delft University of Technology

GE 3.6 – 3.6s (3.6 MW)

First prototype:April 2002Rotor:104 mGearbox:3-stage (PPE)Generator:AsynchronousDoubly-fedDoubly-fed

Enercon E-112 (4.5 MW)

First prototype:	August 2002
Rotor:	114 m
Gearbox:	No
Generator:	Synchronous
	Wound rotor
Inverter:	Full (100%)

REpower 5M (5 MW)

First prototype:	November 2004
Rotor:	126 m
Gearbox:	3-stage (PPE)
Generator:	Asynchronous
	Doubly-fed
Inverter:	Partial (30%)

Multibrid M5000 (5MW)

First prototype:December 2004Rotor:116 mGearbox:1-stage (Planet)Generator:SynchronousPermanent MagnetInverter:Full (100%)

Siemens SWT-3.6-107 (3.6 MW)

First prototype:	December 2004
Rotor:	107 m
Gearbox:	3-stage (PPE)
Generator:	Asynchronous
	Squirrel cage
Inverter:	Full (100%)

Future developments

- Announced by leading manufacturers
 - Vestas V120 (4.5 MW)
 - Upgrade Enercon E-112 \rightarrow E-126 (?? MW)
- Developers involvement
 - Bard Engineering Bard VM (5 MW)
 - Econcern DarwinD (4.5 MW)
- No end to scale and concept evolution

