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Consider a body with an attached xyz-coordinate
system. The coordinate system is such that the
axes coincide with principal directions and the
origin is either a fixed point or the mass centre.
The body is set to spin about the z-axis with
constant rate p. It is immediate to realise that
the components of the angular velocity vector ω

are
ω1 = ω2 = 0; ω3 = p. (1)

If no further action is exerted on the body, one
would observe that the z-axis would keep the cur-
rent orientation and the xy-plane (which is indeed attached to the body) would rotate with
rate p about the z-axis. An external observer standing on top of the z-axis would make
the following snapshots for t = 0, t = t1 and t = t2:
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The components of ω do not change during this
motion. Consequently, it can be stated that

ω̇1 = ω̇2 = ω̇3 = 0. (2)

An action is now exerted on the body in order to
change the direction of the spin axis —the z-axis
in this case— with constant rate. This action is
often referred to as precession and is described by
an angular velocity vector Ω = Ω1i + Ω2j + Ω3k

superposed to the initial spin p = pk. The major



difference between Ω and p is that while p is attached to the body, Ω is fixed. The latter
observation is formalised as

dΩ

dt
= 0, (3)

while the angular velocity ω of the coordinate system attached to the body now has the
components

ω1 = Ω1; ω2 = Ω2; ω3 = Ω3 + p. (4)

It can therefore be expected that since the coordinate system is rotating while the frac-
tion Ω of the angular velocity is a fixed vector in space, the components of Ω will change
in time. Equation (3) can now be developed as

dΩ

dt
= Ω̇1i + Ω̇2j + Ω̇3k + ω × Ω = 0. (5)

The cross product in (5) is elaborated as

ω × Ω =
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= −pΩ2i + pΩ1j, (6)

which, after back-substitution in (5), provides the expressions

Ω̇1 = pΩ2; Ω̇2 = −pΩ1; Ω̇3 = 0. (7)

Remember that the total angular velocity vector ω of the body has the components

ω1 = Ω1; ω2 = Ω2; ω3 = Ω3 + p. (8)

Taking time derivatives in (8) one gets

ω̇1 = Ω̇1; ω̇2 = Ω̇2; ω̇3 = Ω̇3 + ṗ. (9)

Substituting (7) into (9) and keeping in mind that the spin rate is constant, i.e. ṗ = 0,
provides

ω̇1 = pΩ2; ω̇2 = −pΩ1; ω̇3 = 0. (10)

Finally, equation (8) can be used in (10) to provide a purely kinematic relation between
the angular velocity and acceleration components,

ω̇1 = pω2; ω̇2 = −pω1; ω̇3 = 0. (11)

In practice one should identify the spin vector p and the action Ω at the considered
instant, choose convenient axes —the z-axis parallel to p and the x- and y-axes in such
a way that the components ω1 and ω2 have a simple expression— and obtain the angular
accelerations ω̇1 and ω̇2 from expression (11). All components {ωi} and {ω̇i} are then
available and can be plugged into Euler equations of motion. The calculated moments are
then expressed in the chosen axes as well.


