## Kinematics of a spinning body when the direction of the spin axis changes

Miguel A. Gutiérrez

Engineering Mechanics Group, Faculty of Aerospace Engineering, Delft University of Technology

Consider a body with an attached xyz-coordinate system. The coordinate system is such that the axes coincide with principal directions and the origin is either a fixed point or the mass centre. The body is set to spin about the z-axis with constant rate p. It is immediate to realise that the components of the angular velocity vector  $\boldsymbol{\omega}$ are

$$\omega_1 = \omega_2 = 0; \qquad \omega_3 = p. \tag{1}$$

If no further action is exerted on the body, one would observe that the z-axis would keep the cur-

rent orientation and the xy-plane (which is indeed attached to the body) would rotate with rate p about the z-axis. An external observer standing on top of the z-axis would make the following snapshots for t = 0,  $t = t_1$  and  $t = t_2$ :



The components of  $\boldsymbol{\omega}$  do not change during this motion. Consequently, it can be stated that

$$\dot{\omega}_1 = \dot{\omega}_2 = \dot{\omega}_3 = 0. \tag{2}$$

An action is now exerted on the body in order to change the direction of the spin axis —the z-axis in this case— with constant rate. This action is often referred to as *precession* and is described by an angular velocity vector  $\mathbf{\Omega} = \Omega_1 \mathbf{i} + \Omega_2 \mathbf{j} + \Omega_3 \mathbf{k}$ superposed to the initial spin  $\mathbf{p} = p\mathbf{k}$ . The major



y

difference between  $\Omega$  and  $\mathbf{p}$  is that while  $\mathbf{p}$  is attached to the body,  $\Omega$  is fixed. The latter observation is formalised as

$$\frac{d\Omega}{dt} = \mathbf{0},\tag{3}$$

while the angular velocity  $\boldsymbol{\omega}$  of the coordinate system attached to the body now has the components

$$\omega_1 = \Omega_1; \qquad \omega_2 = \Omega_2; \qquad \omega_3 = \Omega_3 + p. \tag{4}$$

It can therefore be expected that since the coordinate system is rotating while the fraction  $\Omega$  of the angular velocity is a fixed vector in space, the components of  $\Omega$  will change in time. Equation (3) can now be developed as

$$\frac{d\mathbf{\Omega}}{dt} = \dot{\Omega}_1 \mathbf{i} + \dot{\Omega}_2 \mathbf{j} + \dot{\Omega}_3 \mathbf{k} + \boldsymbol{\omega} \times \mathbf{\Omega} = \mathbf{0}.$$
(5)

The cross product in (5) is elaborated as

$$\boldsymbol{\omega} \times \boldsymbol{\Omega} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Omega_1 & \Omega_2 & \Omega_3 + p \\ \Omega_1 & \Omega_2 & \Omega_3 \end{vmatrix} = -p\Omega_2 \mathbf{i} + p\Omega_1 \mathbf{j}, \tag{6}$$

which, after back-substitution in (5), provides the expressions

$$\dot{\Omega}_1 = p\Omega_2; \qquad \dot{\Omega}_2 = -p\Omega_1; \qquad \dot{\Omega}_3 = 0.$$
(7)

Remember that the total angular velocity vector  $\boldsymbol{\omega}$  of the body has the components

$$\omega_1 = \Omega_1; \qquad \omega_2 = \Omega_2; \qquad \omega_3 = \Omega_3 + p. \tag{8}$$

Taking time derivatives in (8) one gets

$$\dot{\omega}_1 = \dot{\Omega}_1; \qquad \dot{\omega}_2 = \dot{\Omega}_2; \qquad \dot{\omega}_3 = \dot{\Omega}_3 + \dot{p}. \tag{9}$$

Substituting (7) into (9) and keeping in mind that the spin rate is constant, i.e.  $\dot{p} = 0$ , provides

$$\dot{\omega}_1 = p\Omega_2; \qquad \dot{\omega}_2 = -p\Omega_1; \qquad \dot{\omega}_3 = 0. \tag{10}$$

Finally, equation (8) can be used in (10) to provide a purely kinematic relation between the angular velocity and acceleration components,

$$\dot{\omega}_1 = p\omega_2; \qquad \dot{\omega}_2 = -p\omega_1; \qquad \dot{\omega}_3 = 0. \tag{11}$$

In practice one should identify the spin vector  $\mathbf{p}$  and the action  $\Omega$  at the considered instant, choose convenient axes —the z-axis parallel to  $\mathbf{p}$  and the x- and y-axes in such a way that the components  $\omega_1$  and  $\omega_2$  have a simple expression— and obtain the angular accelerations  $\dot{\omega}_1$  and  $\dot{\omega}_2$  from expression (11). All components  $\{\omega_i\}$  and  $\{\dot{\omega}_i\}$  are then available and can be plugged into Euler equations of motion. The calculated moments are then expressed in the chosen axes as well.