Kinematics of a spinning body when the direction of the spin axis changes

Miguel A. Gutiérrez

Engineering Mechanics Group, Faculty of Aerospace Engineering, Delft University of Technology

Consider a body with an attached $x y z$-coordinate system. The coordinate system is such that the axes coincide with principal directions and the origin is either a fixed point or the mass centre. The body is set to spin about the z-axis with constant rate p. It is immediate to realise that the components of the angular velocity vector ω are

$$
\begin{equation*}
\omega_{1}=\omega_{2}=0 ; \quad \omega_{3}=p \tag{1}
\end{equation*}
$$

If no further action is exerted on the body, one would observe that the z-axis would keep the cur-
 rent orientation and the $x y$-plane (which is indeed attached to the body) would rotate with rate p about the z-axis. An external observer standing on top of the z-axis would make the following snapshots for $t=0, t=t_{1}$ and $t=t_{2}$:

The components of $\boldsymbol{\omega}$ do not change during this motion. Consequently, it can be stated that

$$
\begin{equation*}
\dot{\omega}_{1}=\dot{\omega}_{2}=\dot{\omega}_{3}=0 . \tag{2}
\end{equation*}
$$

An action is now exerted on the body in order to change the direction of the spin axis - the z-axis in this case - with constant rate. This action is often referred to as precession and is described by an angular velocity vector $\Omega=\Omega_{1} \mathbf{i}+\Omega_{2} \mathbf{j}+\Omega_{3} \mathbf{k}$ superposed to the initial spin $\mathbf{p}=p \mathbf{k}$. The major

difference between $\boldsymbol{\Omega}$ and \mathbf{p} is that while \mathbf{p} is attached to the body, $\boldsymbol{\Omega}$ is fixed. The latter observation is formalised as

$$
\begin{equation*}
\frac{d \boldsymbol{\Omega}}{d t}=\mathbf{0} \tag{3}
\end{equation*}
$$

while the angular velocity $\boldsymbol{\omega}$ of the coordinate system attached to the body now has the components

$$
\begin{equation*}
\omega_{1}=\Omega_{1} ; \quad \omega_{2}=\Omega_{2} ; \quad \omega_{3}=\Omega_{3}+p \tag{4}
\end{equation*}
$$

It can therefore be expected that since the coordinate system is rotating while the fraction $\boldsymbol{\Omega}$ of the angular velocity is a fixed vector in space, the components of $\boldsymbol{\Omega}$ will change in time. Equation (3) can now be developed as

$$
\begin{equation*}
\frac{d \boldsymbol{\Omega}}{d t}=\dot{\Omega}_{1} \mathbf{i}+\dot{\Omega}_{2} \mathbf{j}+\dot{\Omega}_{3} \mathbf{k}+\omega \times \mathbf{\Omega}=\mathbf{0} \tag{5}
\end{equation*}
$$

The cross product in (5) is elaborated as

$$
\boldsymbol{\omega} \times \boldsymbol{\Omega}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{6}\\
\Omega_{1} & \Omega_{2} & \Omega_{3}+p \\
\Omega_{1} & \Omega_{2} & \Omega_{3}
\end{array}\right|=-p \Omega_{2} \mathbf{i}+p \Omega_{1} \mathbf{j}
$$

which, after back-substitution in (5), provides the expressions

$$
\begin{equation*}
\dot{\Omega}_{1}=p \Omega_{2} ; \quad \dot{\Omega}_{2}=-p \Omega_{1} ; \quad \dot{\Omega}_{3}=0 \tag{7}
\end{equation*}
$$

Remember that the total angular velocity vector $\boldsymbol{\omega}$ of the body has the components

$$
\begin{equation*}
\omega_{1}=\Omega_{1} ; \quad \omega_{2}=\Omega_{2} ; \quad \omega_{3}=\Omega_{3}+p \tag{8}
\end{equation*}
$$

Taking time derivatives in (8) one gets

$$
\begin{equation*}
\dot{\omega}_{1}=\dot{\Omega}_{1} ; \quad \dot{\omega}_{2}=\dot{\Omega}_{2} ; \quad \dot{\omega}_{3}=\dot{\Omega}_{3}+\dot{p} \tag{9}
\end{equation*}
$$

Substituting (7) into (9) and keeping in mind that the spin rate is constant, i.e. $\dot{p}=0$, provides

$$
\begin{equation*}
\dot{\omega}_{1}=p \Omega_{2} ; \quad \dot{\omega}_{2}=-p \Omega_{1} ; \quad \dot{\omega}_{3}=0 \tag{10}
\end{equation*}
$$

Finally, equation (8) can be used in (10) to provide a purely kinematic relation between the angular velocity and acceleration components,

$$
\begin{equation*}
\dot{\omega}_{1}=p \omega_{2} ; \quad \dot{\omega}_{2}=-p \omega_{1} ; \quad \dot{\omega}_{3}=0 \tag{11}
\end{equation*}
$$

In practice one should identify the spin vector \mathbf{p} and the action $\boldsymbol{\Omega}$ at the considered instant, choose convenient axes - the z-axis parallel to \mathbf{p} and the x - and y-axes in such a way that the components ω_{1} and ω_{2} have a simple expression - and obtain the angular accelerations $\dot{\omega}_{1}$ and $\dot{\omega}_{2}$ from expression (11). All components $\left\{\omega_{i}\right\}$ and $\left\{\dot{\omega}_{i}\right\}$ are then available and can be plugged into Euler equations of motion. The calculated moments are then expressed in the chosen axes as well.

