Scattering in metals
|

« Metals without scattering

Impurity scattering

= Screening

Localization

= Doped semiconductors

* Quasiparticles and Fermi liquid theory
Electron-electron scattering

Electron as a wave packet

Bloch waves: fixed (quasi)momentum; coordinate absolutely uncertain
Useless for most transport phenomena!

Let us build a wave packet

Collect Bloch waves with quasimomenta
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The integral is non-zero provided
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Bloch oscillations

How conduction in an ideal metal would look like?

Take an electron in constant electric field dﬁ _ eE
dt

Quasimomentum increases: does the
velocity increase?

No!
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Electrons perform oscillating motion: Bloch oscillations  No conductance!
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Only have been observed in VERY clean semiconductors. Why do they
never occur in real systems?

Because of the scattering!!

Scattering

‘ Scattering of electrons ‘

Very complicated potential

Inelastic

Momentum changed

Energy changed
Momentum changed R 9

Energy not changed = Other electrons

< Lattice vibrations (phonons)
= Collective oscillations

= External radiation

« Bulk impurities

< Surface impurities

= Dislocations and other defects
= Interfaces

...

Leads to: conductance, dephasing...

Leads to: conductance, localization, ...

Impurity scattering

e —
Neutral impurities: impenetrable spheres R~ Rb = hz / I’Tle2 ~0.1nm

(same order of the lattice period)

Charged impurities: Long-range Coulomb potential @ ~ elr

In metals, also behave like impenetrable spheres due to screening
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Screening

Unscreened charge: creates Coul

Ap=4mes(t) T—»

If there are free charges around: Screened charge
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Potential obeys Poisson equation: Ag{) = 472’65ne
§ne - shift of the electron density due to the potential
Thomas-Fermi approximation:
5”9 =n, (fu + 9(0) —n, (,U) =~

Screening radius: @, = (472'625I’]e /6;1)_1/2
(only makes sense for aS > AF )
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Screening

Poisson equation: A¢7 = as_z(p

Solution: | = _(e/ r)e’”as

Decays at the distances of the order of @ = (47[826ne /ay)71/2 !

“Impenetrable sphere” of the radius as
Estimates for the free electron gas
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TF approximation is good for high density!
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Screening

Estimates for the free electron gas: Cu

E. =7eV ~10%J

m=10"kg ==\, =}/|/2mE, ~10°m=01mm|v, ~10°'m/s
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in metals

Impurity scattering

Elastic: Momentum relaxation; no energy relaxation
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Effective scattering cross-section: as ~10 0m

Density of impurities: n;
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If an electron moves a distance L it collides with n, Las impurities
Mean free path | - distance it passes without collisions

I ~1/(n@%) Example: pure cu ¢, ~10° =1~10° n;'a;? ~300um

Momentum relaxation time: 7 =1/V Temperature independent!!

Anderson localization

Intermediate conclusion: The more impurities the higher is the conductance.

Wrong and contradicts the common sense!

————————————————————— Fermi level here: weak disorder; metal

Ohm'’s law:

Fermi level here: strong disorder; insulator

\/ Electron states are localized

Need really dirty metals

criterion: |Kel ~1) Recollect I ~1/(nia32) —> ¢ ~1

Doped semiconductors

Localization: for metals exotic possibility and almost never observed. It is a
pity, since physics is interesting. Let us look at semiconductors.

Clean semiconductor, zero temperature:
a good insulator with a gap

Doped semiconductor:
impurity states

&€ [ conduction
band: empty Donor (electron)

states

Acceptor (hole)
states

Valence band: fully occupied Impurity states: randomly located

in space and energy

Doped semiconductors

Transport: hopping between localized states: Insulator!!
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Conduction: electrons optimize the hopping path to increase the total
probability.

Probability of a single hop:

Even more impurities: states start to overlap: Percolation
Metallic state




Electron-electron scattering

. . . 2,1/3
Typical energy of electron-electron interaction: U-~e ne

n,=3-100m* |U=9-10"J ~E,

Strong interactions — too bad! What should we do?

Take again copper:

Landau theory of Fermi liquid:

Elementary excitations (quasiparticles) in a system of interacting

electrons have properties similar to elementary excitations in a free
electron gas

Quasiparticles in a free
electron gas

Ground state: states below the Fermi energy are occupied; others are empty
Elementary excitations: Y

Electron Hole
p’-pe _P
Electron energy: §e :ﬁzﬁ(p_pF):VF(p_pF)
Hol : 2 p?
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¢

Electron branch

Hole branch

P—Pe

Quasiparticles in Fermi liquid

[Ground state: states below the Fermi energy are occupied; others are empty
Elementary excitations:
Electron Hole

Hole branch f

Electron branch

\V -effective velocity
(determined by interactions)

P—Pe

Wave function of a quasiparticle: “(/I ocexp(ict/n—yt/h) ”

) - damping due to inelastic interactions (scattering of quasiparticles)

Quasiparticles are well-defined provided

Damping in weakly interacting
Fermi gas

1 interacts with 2

Momentum conservation:
_p1+p2:r)1+pz L
Pauli principle: ” Py p'p p'Z > Pei Py < Pe ”

Energy conservation: Golden rule

Vo J.é'(g1 +¢,—&'—¢&',)dp,dp’,

Result:

Must be also valid in Fermi liquid (phase space argument)

- quasiparticles are well-defined

Electron-electron scattering

Relevant energies:

&~kgT

Energy relaxation time: |7, ~ th /(kBT)2

Let us compare this to the momentum relaxation time:

r<r, =k, T < Jhve, /1

Again 5-nines copper: | = 300/lm, &g = TeV

T =500K

- does not occur in real life




