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Magnetism

• Types of magnetic systems
• Pauli paramagnetism in metals
• Landau  diamagnetism in metals
• Larmor diamagnetism in insulators
• Ferromagnetism of electron gas
• Spin Hamiltonian
• Mean field approach
• Curie transition

Magnets

Zero external field Finite external field

Paramagnets

Diamagnets
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Ferrimagnets

… … …

Pauli paramagnetism

Let us first look at magnetic properties of a free electron gas.
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Electron are spin-1/2 particles

In external magnetic field B – Zeeman splitting
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Fermi level

- minority spins

- majority spins

Pauli paramagnetism
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Magnetization (magnetic moment per unit volume):
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0χ > - paramagnetism

Pauli succeptibility
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Magnetic succeptibility:

B=1T corresponds to provided m is free electrons’s mass

For any fields, /e B mc µ

Landau quantization
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ˆB zA free electron in magnetic field:

Schrödinger equation: ; 0y x zA Bx A A= = =

Solutions: labeled by two indices , zn k
( ) exp( ) ( / )nk y z n yr ik y ik z x ck eBψ ϕ= + −

nϕ - wave functions of a harmonic oscillator

Energies:
2 2 / 2 ( / )( 1/ 2)nk zk m e B mc nε = + +

We “quantized” momenta transverse to the field

- strongly degenerate!!

(Landau levels)
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Landau diamagnetism

A free electron in magnetic field: moves along spiral trajectories
and create magnetic field themselves.
This magnetic field is directed antiparallel to the external one
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Diamagnetism

Magnetization:
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Result for the succeptibility:
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Total succeptibility: 2 / 3 0P L Pχ χ χ χ= + = > : paramagnetic!

Electrons in metals

We know that there are diamagnetic metals. How can we explain their 
existence?
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* * * 2; ( / )P P L L m mχ χ χ χ= =

Different spectra of electrons in metals and free electrons.

Example: renormalized electron mass

This only affects orbital motion, not Zeeman splitting

We can explain paramagnetic and diamagnetic metals!

But there is no way we can explain ferromagnetic and antiferromagnetic
metals in non-interacting electron model.

Try insulators?

Larmor diamagnetism

Consider an ionic insulator with filled shells. Electrons are localized at the ions.
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Electron Hamiltonian: 22
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r small: consider terms with the field as a perturbation.

Correction to the energy in the ground state: 

Total spin and total momentum of electrons in a filled shell are zero;
only the term with       contributes.
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Larmor diamagnetism

Succeptibility:

2 2
2 2 2 2

2 212 12g i g
i g

e e ZNE B r B r
mc mc

∆ = =∑

2 2
2

2 2

1
6 A g

E e Z c r
V B mc

χ ∂
= − = −

∂
Z - ionic charge

- #of atoms per unit volume

Diamagnetism!

If the ionic shells are not filled – can get paramagnetic contribution due to
other terms. 

Can explain paramagnetic and diamagnetic insulators, but not
ferromagnetic and antiferromagnetic ones!

Ac

Exchange interaction

Two electrons: antisymmetric wave function!
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Take an electron level 

Wave function of two electrons:

Energy splitting due to interaction: spin-dependent!
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Spin Hamiltonian

Ferromagnetism for localized 
electrons

Try  to visualize for localized electrons
(atoms; artificial atoms – quantum dots; defects etc)

δ

J δ<

Discrete electron states; spacing

The simplest model:

δ
(each level is doubly degenerate)

To put an electron into the system costs electrostatic energy U and exchange
energy -J

Non-magnetic state J δ> Ferromagnetic state

Energy to pay:
Same spin: U Jδ+ −
Opposite spin: U
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Itinerant ferromagnetism
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If we can not get ferromagnetism with free electrons, try interacting
electrons.

Hartree-Fock approximation:

Hartree (direct) 
interaction

Fock (exchange) 
interaction.

Only exists if spin 
projections are the same 

in the states i and j

Itinerant ferromagnetism

2
int

3
4

FkE Ne
π

= −

Working the interaction terms out for free electrons (see Advanced 
Quantum Mechanics, lecture 4)

Try now a spin-polarized ground state: 
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NB:
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Kinetic energy loss can be compensated by the potential energy gain!
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- spin-polarized ground state (ferromagnetism!!)

2 2/Ba me= - Bohr radius
Never occurs in real life.

Antiferromagnetic ordering

A different situation: a pair of magnetic atoms in an insulating matrix 

t U

Consider d-electrons, 5 electrons per atom

U – ionization energy; t – overlap between the atoms

Unperturbed ground state: either parallel or antiparallel spins. 

Antiferromagnetic ordering

2nd order corrections to the ground state: virtual states 2
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Ground Virtual

225 / ,E t U t U∆ = −

Ferromagnetic state: no second-order correction (forbidden
by Pauli principle)

Antiferromagnetic state preferential!

Spin Hamiltonian

Does not work for many atoms – but still represents a good model to treat 
magnetism

ˆ ˆˆ
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ij
H J S S= −∑ i and j – lattice sites

Common approximation: only nearest neighbours interact; the same
exchange integrals for all bonds 

Heisenberg model:
ˆ ˆˆ
i j

ij
H J S S= − ∑

Exact solution: only known for 1D chain (Bethe 1931) – no magnetism!

0 ( 0)J J> < favors ferromagnetism (antiferromagnetism)

Let us see what we can do with approximate solutions.
Can also be treated for high spins (classical)

Mean field approach

Let us single out one particular spin at i.

Approximation: this spin sees 
the average field (Weiss field)

ˆ
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Now we need to calculate the average field self-consistently.

Each site has N nearest neighbours. For each neighbour, 

chance to be “up” (parallel to the field) exp( / 2 )BP h k T↑ ∝ −
chance to be “down” (antiparallel to the field) exp( / 2 )BP h k T↓ ∝ +

Equation for the field: ( ) tanh
2 2 2 B

JN JN hh P P
k T↑ ↓= − − =
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Mean field approach

tanh
2 2 B

JN hh
k T

=

Depending on the temperature,
either one solution h=0 (no magnetism) or three solutions (ferromagnetism)

1 1
2 2 4B

B

JN JNk T
k T

> ⇒ <Three solutions at:

A phase transition between a ferromagnetic and paramagnetic state!

Curie’s temperature

Curie transition

212 ( )B c ch k T T T= −

4c
B

JNT
k

=

Solution:

Magnetization close to transition temperature

3tanh / 3x x x≈ −

Square-root singularity

Numerical solutions: give power laws, but not the square root.
Obviously, these are problems of the mean-field approximation.

To describe paramagnetic state: Can add the external field 0h

0 tanh
2 2 B

JN hh h
k T

= +


