Second order phase transitions

- Order parameter
- Free energy
- · Critical behavior
- Phase transitions in external field
- Landau functional
- Fluctuations of the order parameter
- Ginzburg number
- Critical region

Phase transitions

Phenomenological definition: two phases

Energy is always continuous at the transition point

1st order: First energy derivatives are discontinuous 2nd order: First derivatives are continuous; second derivatives are discontinuous

(according to this definition, also 3rd order or even fractional order transitions are possible!)

More intuitive understanding

1st order phase transition: two phases (example: liquid-gas transition)

Low-temp phase High-temp phase • T

2nd order phase transition: two phases with different symmetry

Second order phase transitions

2nd order phase transition: two phases with different symmetry Spontaneous symmetry breaking

Examples:

- > Structure phase transitions: space symmetry group
- Pyroelectricity: Inversion symmetry
 Magnetism: Time-reversal symmetry
- Superconductivity: Gauge invariance

Mathematical description: symmetry groups

Low-symmetry phase: group $\ L$ High-symmetry phase: group $\, {f H} \,$

 2^{nd} order phase transition: L is a subgroup of $\,H$

Otherwise: 1st order phase transition

Order parameter How do we characterize the spontaneous symmetry breaking? Order parameter η – a quantity characterizing the transition $\eta = 0$ high-symmetry phase $\eta \neq 0$ low-symmetry phase Examples: Structural phase transition - atomic displacement (real vector or scalar) Ferromagnetic (Curie) transition – magnetization (vector) Superconducting phase transition – complex scalar

> Transitions in liquid crystals - tensor

At the transition point the order parameter is continuous; the derivative must be discontinuous

Singularities in the thermodynamic properties

Order parameter fluctuations
$\Delta F[\eta] = \frac{1}{2} \int d^{3}\vec{r} \left[c \left(\vec{\nabla} \Delta \eta \right)^{2} + a\tau \left(\Delta \eta \right)^{2} + 3b\eta_{0}^{2} \left(\Delta \eta \right)^{2} \right]$ Expand in Fourier series: $\Delta \eta(\vec{r}) = \frac{1}{\sqrt{V}} \sum_{k} \eta_{\bar{k}} e^{i\vec{k}\vec{r}}$
$\Delta F[\eta] = \sum_{k} \left(a\tau + 3b\eta_0^2 + ck^2 \right) \eta_k ^2$ This is a contribution of a particular fluctuation.
What is the contribution of all fluctuations to the free energy? Probability of a fluctuation: $exp(-\Delta F[\eta]/k_BT)$

Critical region

What if we can not use $4 - \epsilon$ expansion?

Scaling hypothesis!

There is only one spatial scale characterizing the fluctuations: $r_0 \sim r_c$ All physical laws stay the same at any scale.

Mathematically: if we rescale the length $r \rightarrow r/u$ all the relations stay the same (do not depend on u) upon the power-law rescaling

 $\tau \rightarrow \tau u^{\delta_{\tau}}, \eta \rightarrow \eta u^{\delta_{\eta}}, h \rightarrow h e^{\delta_{h}}$ (Renormalization group procedure)

Provides the values of critical indices (different from Landau theory)