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Phase transitions

Phenomenological definition: two phases
Energy is always continuous at the transition point

1st order: First energy derivatives are discontinuous
2nd order: First derivatives are continuous; second derivatives
are discontinuous

(according to this definition, also 3 order or even fractional order
transitions are possible!)
More intuitive understanding Low-temp phase

1st order phase transition: two phases High-temp phase
(example: liquid-gas transition) T

2nd order phase transition: two phases with different symmetry

Second order phase transitions
|

2nd order phase transition: two phases with different symmetry
Spontaneous symmetry breaking

Examples:

» Structure phase transitions: space symmetry group
> Pyroelectricity: Inversion symmetry
» Magnetism: Time-reversal symmetry
» Superconductivity: Gauge invariance
Mathematical description: symmetry groups
Low-symmetry phase: group L
High-symmetry phase: group H
2nd order phase transition: L is a subgroup of H

Otherwise: 1st order phase transition

Order parameter
|

How do we characterize the spontaneous symmetry breaking?
Order parameter n - a quantity characterizing the transition
n= 0 high-symmetry phase

n+ 0 low-symmetry phase

Examples:

» Structural phase transition - atomic displacement (real vector or scalar)
» Ferromagnetic (Curie) transition - magnetization (vector)

> Superconducting phase transition - complex scalar

» Transitions in liquid crystals - tensor

At the transition point the order parameter is continuous; the
derivative must be discontinuous

b Singularities in the thermodynamic properties

Landau functional

Next to the transition point: the order parameter is small
Phenomenological theory!
We can expand the free energy in terms of the order parameter

‘| Flnl=F, + Fn+Fn’ + o’ + ' +higher order -Vhy “

Irrelevant

Always vanishes from symmetry

arguments (for Curie transition:

energy is a scalar and can not

contain the first power of a
vector)

Usually vanishes from
symmetry arguments ; if not,
corresponds to a critical point

(1st order phase transition)

At each temperature, the order parameter n is determined from the
minimization of the free energy.

Landau functional

‘| Flnl=Fn’ + Fn* + higher order -Vhy “

V - volume
Usually not
Let us forget for a moment about the needed
external field and determine the

temperature dependence of the coefficients.

F4 -must be positive at all temperatures
(otherwise no equilibrium order parameter):
can take it temperature independent

F,=bV/4,b>0

F2 -must vanish at the transition temperature

F,=arV/2,a>0 r:T;Tc

External field
term
For Curie
transition:

_hh0




Landau functional

ar
Flnl/Vv =?7]2 +Zf74 Only one phase exists at each temperature!

E F
n n
The only minimum: Two minima: 77 = ++/-ar /b

n=0
Symmetry broken!!

High-symmetry phase Low-symmetry phase

Singularities

Fln/v :%772 +-7n*  Consider T <T,

4
Order parameter: |77 0c [T, =T “
Free energy: E/N == (aT)z

_TY¥
o =0

Entropy: |S =—0F /0T ocTC —T| - continuous at the transition point
Specific heat: |[C =TS /0T | - jumps at the transition point

External field

|
ar b

Flnl/V ==n"+-75"-h

[n] v

Equation for the minimum:

) 7 )
one solution |T =T, =7 = (h/b)"*® Three solutions: two stable, one

unstable

External field

ar b
Flnl/V ==n"+=5"-h
[n] v

Succeptibility: [T =T, = 7= (h/b)"®
x=onlohe|T,-T["

The transition is “smeared” - for any value of the field the order
parameter is nonzero.
This is because the field lowers the symmetry of the high-symmetry phase.
Typical scale of the field: when one has three solutions
312
_2(ald) -
c 3 (3b)112

Intermediate summary
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We found a number of critical exponents

Order parameter: h=0= mnoc (Tc —T)l/z
T-T —noh’®

Specific heat:

Succeptibility:

The problem: often not confirmed by exact solutions, numerical
studies or experiments

Reason: fluctuations of the order parameter not taken into account
in the mean-field approach

Landau functional

Order parameter fluctuations:

Assume that only long-wavelength fluctuations are important
lCie (2 a b

Fln]= Id3r |:7(V77) +—Tnz +=7n" 7h77:|
2 \2 4

Fluctuation term: higher order
gradients are less important
If fluctuations are small, we can linearize the functional around the

uniform solution 77, 7(F) =1, + A7p(F)
=

Quadratic: 1 T ) 2 :
AF[ﬂ]:EId3f[c(VA17) +ar(An) +3br; (An) }




Order parameter fluctuations

AF[7] =%Id3f [c(?An)z +ar(An) +30 (An)z}

Expand in Fourier series:

An(r)= %Z%eﬁ

AF[7]= Z(a‘r +3br +Ck2)‘77k
K
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This is a contribution of a particular fluctuation.
What is the contribution of all fluctuations to the free energy?

Probability of a fluctuation: exp(fAF[n]/kBT)

Specific heat

Fluctuation contribution to the partition function:

Zy= Y exp(-AF[7]/k,T)

all fluct.

Mathematically: an integral over a field
It is best expressed in Fourier representation:

a
3.

1
. = @2’

Fluctuation contribution to the free energy: |Fy :—kBT In Zy

Result for the specific heat: Va2 1

Corr—
167¢* far + 3or

z, =[] d Ren,d Imz, exp(-AF[7]/k,T)
k

Specific heat

ol el
167¢™ far + 30

Va? 1

High symmetry phase:

Low-symmetry phase:

==

o=y = Coc(T,-T) ™
I b

—— Mean field

Fluctuations

Ginzburg number

We have assumed that fluctuations are small. How good
is this assumption?

Compare fluctuation correction to the specific heat to the
mean field value:

a’ Va® 1
= C=
CMF ZbTC \% 167[C3/2 \/M

Not too close to the transition!

Need G« 1!

2
c

G D T3 <|r<q
ac

Ginzburg
number

Otherwise we can not expand
in powers of the order

parameter!

Ginzburg number

b’T?

3 Let us express it in more intuitive terms.
ac

Two

I, -distance between the particles
(formally: the fluctuation of the
order parameter at this scale is
the same as the order parameter itself

(distance at which the order
parameter fluctuations are correlated)

spatial scales

[FIV ~kgT.r,* ~ an* ~ by
[ere” ~ | |5, ~Vera]

-correlation radius

Large fluctuations mean

Critical region: Landau theory does not apply

Critical region

Numbers depend on the microscopic details of the system

- Superconductors: G ~10*  1n practice, can not be achieved
- Magnetic systems:

G ~0.1 Critical region important!
What can we say about the critical region?
LocfT-T[" >
But I also grows and faster than I, : they become equal at the edge
of the critical region
D=4: there is a systematic expansion in I, /T all the way to the

transition point.
Wilson '75: 4 — € expansion: can extrapolate down to D=3!!




Critical region

e —
What if we can not use 4 - € expansion?

Scaling hypothesis!

There is only one spatial scale characterizing the fluctuations: Iy ~ I,
All physical laws stay the same at any scale.

Mathematically: if we rescale the length F —>r/U

all the relations stay the same (do not depend on u) upon

the power-law rescaling

> u* N 77u§" ,h—he*  (Renormalization group procedure)

Provides the values of critical indices (different from Landau theory)




