Microscopic theory of superconductivity

- Superfluidity
- Phonon attraction
- Cooper pairs
- BCS theory
- Energy gap
- Correlation length
- Type-I and type-II superconductors

Electron-phonon interaction again

Another process contributing: electron absorbs a phonon with -k

Initial state: electron \#1 with \vec{p}_{1} and electron \#2 with \vec{p}_{2}
Intermediate state: electron \#1 with \vec{p}_{1}, electron \#2 with $\vec{p}_{2}+\hbar \vec{k}$ phonon with $-\vec{k}$
Final state: electron \#1 with $\vec{p}_{1}-\hbar \vec{k}$ and electron $\# 2$ with $\vec{p}_{2}+\hbar \vec{k}$ $\varepsilon\left(\vec{p}_{1}\right)+\varepsilon\left(\vec{p}_{2}\right)=\varepsilon\left(\vec{p}_{1}-\hbar \vec{k}\right)+\varepsilon\left(\vec{p}_{2}+\hbar \vec{k}\right)$-same energy of initial

Second-order perturbation theory: $\Delta E_{i}=\sum_{v} \frac{\left|M_{i v}\right|^{2}}{E_{i}-E_{v}}$
$\Delta E_{2 \vec{p}_{1}}=\frac{\left|V_{\vec{k}}\right|^{2}}{\varepsilon\left(\vec{p}_{2}\right)-\varepsilon\left(\vec{p}_{2}+\hbar \vec{k}\right)-\hbar \omega(\vec{k})}=-\frac{\lambda}{g V} \frac{\hbar \omega(\vec{k})}{\varepsilon\left(\vec{p}_{1}\right)-\varepsilon\left(\vec{p}_{1}-\hbar \vec{k}\right)+\hbar \omega(\vec{k})}$

Superfluidity

Liquid Helium-4: at low temperature flows with zero viscosity
Relative to the liquid (velocity \mathbf{v}): viscosity means creation of quasiparticles
Momentum p; energy $\varepsilon(\vec{p})$
Relative to the ground: momentum $\vec{P}^{\prime}=\vec{P}+M \vec{v}$
energy $E^{\prime}=E+\vec{P} \vec{v}+M v^{2} / 2$
M - mass of the liquid
Energy change associated with the creation of a quasiparticle:
$\Delta E=\varepsilon(\vec{p})+\vec{p} \vec{v} \quad$ If it is positive, superfluid (no viscosity) $v<v_{c}=\min (\varepsilon(p) / p)$

Electron-phonon interaction again

> One electron emits a phonon, another one absorbs this phonon: Mechanism for electron-electron interaction!!
> Initial state: electron \#1 with \vec{p}_{1} and electron \#2 with \vec{p}_{2}
> Intermediate state: electron \#1 with $\vec{p}_{1}-\hbar \vec{k}$, electron \#2 with \vec{p}_{2} phonon with \vec{k}
> Final state: electron $\# 1$ with $\vec{p}_{1}-\hbar \vec{k}$ and electron $\# 2$ with $\vec{p}_{2}+\hbar \vec{k}$
> $\varepsilon\left(\vec{p}_{1}\right)+\varepsilon\left(\vec{p}_{2}\right)=\varepsilon\left(\vec{p}_{1}-\hbar \vec{k}\right)+\varepsilon\left(\vec{p}_{2}+\hbar \vec{k}\right) \quad \begin{aligned} & \text {-same energy of initial } \\ & \text { and final states }\end{aligned}$
> Second-order perturbation theory: $\quad \Delta E_{i}=\sum_{v} \frac{\left|M_{i v}\right|^{2}}{E_{i}-E_{v}}$
> $\Delta E_{\vec{p}_{1}}=\frac{\left|V_{\vec{k}}\right|^{2}}{\varepsilon\left(\vec{p}_{1}\right)-\varepsilon\left(\vec{p}_{1}-\hbar \vec{k}\right)-\hbar \omega(\vec{k})}=\frac{\lambda}{g V} \frac{\hbar \omega(\vec{k})}{\varepsilon\left(\vec{p}_{1}\right)-\varepsilon\left(\vec{p}_{1}-\hbar \vec{k}\right)-\hbar \omega(\vec{k})}$

Superfluidity	
Liquid Helium-4: at low temperature flows with zero viscosity Relative to the liquid (velocity \mathbf{v}): viscosity means creation of quasiparticles	
Relative to the liq Moment	(velocity \mathbf{v}): viscosity means creation of energy $\varepsilon(\vec{p})$
$\begin{aligned} & \text { Relative to the ground: momentum } \vec{P}^{\prime}=\vec{P}+M \vec{v} \\ & \qquad \begin{array}{l} \text { energy } E^{\prime}=E+\vec{P} \vec{v}+M v^{2} / 2 \\ \\ M \text { - mass of the liquid } \end{array} \end{aligned}$	
Energy change associated with the creation of a quasiparticle:	
$\Delta E=\varepsilon(\vec{p})+\vec{p} \vec{v}$	If it is positive, superfluid ($n o$ viscosity)
	$v<v_{c}=\min (\varepsilon(p) / p)$

Correlation length	
What is a typical size of a Cooper pair?	
Example: $\begin{gathered}\Delta / k_{B} \sim T_{c} \sim 10 \mathrm{~K} \\ v \sim 10^{6} \mathrm{~m} / \mathrm{s}\end{gathered} \longrightarrow \delta r \sim 10^{-6} \mathrm{~m}$	
The "size" of a Cooper pair is much bigger than the distance between electrons: It does not make any sense.	
It is better to talk about the correlation between electrons.	
Correlation length: $\xi(T) \sim \hbar v / \Delta(T)$	Diverges at the transition point!
London equations: correspond to $\xi=0$.	

London Iimit
Assume now $\delta \gg \xi$ Region $\xi \ll z \ll \delta$ - both energy gap and magnetic field present. "Superconductor" without Meissner effect $F_{n}-F_{s}=V H_{c}^{2} / 8 \pi$ Negative boundary energy -> unusual behavior of a superconductor in an external field

Bogoliubov - de Gennes equations

```
Minimizing the Hamiltonian:
Bogoliubov - de Gennes equations - Two-component generalization
of Schrödinger equation
Best in the coordinate representation
H}u+\Deltav=\varepsilon
-\hat{H}v+\Delta*}v=\varepsilon
Energy spectrum: same as BCS
\[
\varepsilon_{p}= \pm \sqrt{\Delta^{2}+\xi_{p}^{2}}
\]
```

