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Microscopic theory of 
superconductivity

• Superfluidity
• Phonon attraction
• Cooper pairs
• BCS theory
• Energy gap
• Correlation length
• Type-I and type-II superconductors

Superfluidity

Liquid Helium-4: at low temperature flows with zero viscosity

Relative to the liquid (velocity v): viscosity means creation of quasiparticles

Momentum p; energy ( )pε G

Relative to the ground: momentum 'P P Mv= +
G G G

energy 2' / 2E E Pv Mv= + +
GG

M – mass of the liquid

Energy change associated with the creation of a quasiparticle:

( )E p pvε∆ = +
G GG

If it is positive, superfluid (no viscosity)

min( ( ) / )cv v p pε< =

Superfluidity

Helium-4 ε

p

cv p

Fermi-system:

(bosons)

Elementary excitations are electron-hole pairs
Energy: may be arbitrarily small
Momentum: can be finite

No superfluidity!

May be electrons are bound in pairs and behave like Helium atoms.
Difficulty: Why do not they repel each other then?

Electron-phonon interaction again

One electron emits a phonon, another one absorbs this phonon: 
Mechanism for electron-electron interaction!!

1pG 2pG

Second-order perturbation theory:
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Initial state: electron #1 with and electron #2 with

Intermediate state: electron #1 with 1p k−
GG = , electron #2 with 2pG

phonon with k
G

Final state: electron #1 with 1p k−
GG = and electron #2 with 2p k+

GG =
-same energy of initial
and final states1 2 1 2( ) ( ) ( ) ( )p p p k p kε ε ε ε+ = − + +

G GG G G G= =

Electron-phonon interaction again

Another process contributing: electron absorbs a phonon with -k

1pG 2pG

Second-order perturbation theory:
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Initial state: electron #1 with and electron #2 with

Intermediate state: electron #1 with 1pG , electron #2 with 2p k+
GG =

phonon with k−
G

Final state: electron #1 with 1p k−
GG = and electron #2 with 2p k+

GG =

1 2 1 2( ) ( ) ( ) ( )p p p k p kε ε ε ε+ = − + +
G GG G G G= =

-same energy of initial
and final states

Phonon attraction

Summing up:
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G G G

G
=
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For
1 1( ) ( ) ( )p p k kε ε ω− −

G GG G = � =
2E
gV
λ

∆ = −

Corresponds to attracting point-like interaction!!

( )2 'phV r r
g
λ δ= − −

G G
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Phonon attraction

Electron-electron attraction: ( )2 'phV r r
g
λ δ= − −

G G

Compare this with Coulomb repulsion:

( )
2

2 2 '
'C B

eV e a r r
r r

δ= − ⇒ −
−

G G
G G
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2 2 1ph

C B F

V e
V ge a v

λ λ∼ ∼ ∼
=

Same order of magnitude

Attraction dominates > superconductivity
Repulsion dominates > no superconductivity
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Cooper pairs

1 2 1 2 1 2 1 2
ˆ ˆ ( , ) ( , ) ( , )H H U r r r r E r r⎡ ⎤+ + Ψ = Ψ⎣ ⎦

G G G G G G

We found a (weak) electron-electron attraction, but it does not mean 
two electrons form a bound state (a pair).

Quantum mechanics: an electron in a shallow quantum well:
1D: always a bound state
2D and 3D: no bound state (only if the well is deep enough)

Now, we have not free electrons, but quasiparticles above the Fermi surface.

Two-particle Schrödinger equation:

Ground state: total momentum and total spin of the pair equal zero

1 2 1 2( , ) ( ) ( )p p p
p

r r c r rψ ψ↑ − ↓Ψ =∑ G G G
G

G G G G

Cooper pairs

' '
'

2 p p pp p p
p

c U c Ecξ + =∑G G GG G G
G

Back to Schrödinger equation:

' 0 , , 'D D
pp F F

F F

U U p p p p
v v
ω ω

= − − < < +GG
= =

Solution: E = -2∆
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F DU g ε ω⎛ ⎞ =⎜ ⎟∆⎝ ⎠
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0exp( 2 / ( ) ) exp( 4 / )D F Dg Uω ε ω λ∆ = − = −= =

No small parameter – non-perturbative calculation.

BCS Hamiltonian

ˆ ˆp p p p
p

u v c c↑ − ↓
⎡ ⎤Ψ = +⎣ ⎦∏ G G G G

G

What is the ground state corresponding to this Hamiltonian?
(Advanced quantum mechanics, Lecture 4)

' '
2 11 2' '

1 2 1 2

† † †
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆp p p p pp p
p p p p p

H c c U c c c cσ σ
σ

ξ ↓ ↑↑ ↓
+ = +

= −∑ ∑G G G G GG G
G G G G G

Kinetic energy Phonon attraction (only 
electrons with different spin 

interact)

2 2
1p pu v+ =G G Normal state: v=0

Need to find u and v from the minimisation of energy (variational principle)

BCS theory

2 2( )p pε ξ= ± ∆ +G G

1 11 / , 1 /
2 2p p p p p pu vξ ε ξ ε= + = −G G G G G G

Energy spectrum of quasiparticles:

ε

Fp p−

S
N

No quasiparticles with energy below ∆!

Density of states

2 2
p pε ξ= ∆ +G G
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Energy gap

3.06 ( )c cT T T∆ = −

01.4 exp( 2 /( ))c DT U gUω= −=

Energy spectrum of quasiparticles:

∆

T
cT

(0) 1.76 cT∆ =

- transition temperature

Energy gap can be chosen as the order parameter for the Landau 
description of the second order phase transition – see next Lecture.

Correlation length

/p vδ ∆∼
What is a typical size of a Cooper pair?

/r vδ ∆∼ =

Example: / 10B ck T K∆ ∼ ∼
610 /v m s∼

610r mδ −∼

The “size” of a Cooper pair is much bigger than the distance between 
electrons: It does not make any sense. 

It is better to talk about the correlation between electrons.

Correlation length: ( ) / ( )T v Tξ ∆∼ = Diverges at the transition point!

London equations: correspond to ξ=0.

Pippard limit

Correlation length: ( ) / ( )T v Tξ ∆∼ =
Penetration depth: 2 2/(4 )Smc n eδ π=

Both diverge as 1/ cT T−

Assume δ ξ� and consider a boundary between N and S

zδ

/ extH H
∆

ξ

Region zδ ξ� �
- no energy gap and no magnetic field

“Normal metal” with Meissner effect

2 / 8n s cF F VH π− =

Positive boundary energy -> intermediate state

London limit

Assume now δ ξ�

zδ

/ extH H

∆

ξ

Region zξ δ� � - both energy gap and magnetic field present.

2 / 8n s cF F VH π− =

Negative boundary energy -> unusual behavior of a superconductor in 
an external field

“Superconductor” without Meissner effect

Two types of superconductors

Type I: positive boundary energy δ ξ�
Type II: negative boundary energy δ ξ�

Criterion: ( ) ( ) / ( )T T Tκ δ ξ= -only weakly depends on temperature

1/ 2κ < - type I

1/ 2κ > - type II

Bogoliubov – de Gennes
equations 

†ˆ ˆp pp p pu c v cψ ↑ ↑ − ↓= +G GG G G

† † † *ˆ ˆ ˆ ˆ ˆ ˆ ˆp p p p p p p
p p p

H c c c c c cσ σ
σ

ξ ↑ − ↓ ↓ − ↑= +∆ +∆∑ ∑ ∑G G G G G G G
G G G

Mean-field treatment of BCS Hamiltonian

It is quadratic: can be diagonalized

Not the same u and v as in BCS!!

Two-component wave function:

u
v
⎛ ⎞
⎜ ⎟
⎝ ⎠

Electrons

Holes
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Bogoliubov – de Gennes
equations 

*

ˆ

ˆ
Hu v u

Hv v v

ε

ε

+∆ =

− +∆ =

Minimizing the Hamiltonian:
Bogoliubov – de Gennes equations – Two-component generalization
of Schrödinger equation

Best in the coordinate representation:

Energy spectrum: same as BCS 2 2
p pε ξ= ± ∆ +G G


