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Ginzburg-Landau equations
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• Type-II superconductors
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• Vortex structure
• Vortex motion. Pinning

Ginzburg-Landau theory

BCS: microscopic, very powerful – but too complicated

London equations: describe a very special situation ξ δ

Way out: to develop a theory based on Landau theory
of second order phase transitions. 

Applicability range: close to the transition temperature.
No restrictions concerning the nature of (conventional) superconductors.

Idea: order parameter is a complex number – wave function of Cooper pairs.
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Free energy

Free energy – functional of the order parameter.
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Ginzburg-Landau equations

Minimizing the free energy:
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Ginzburg-Landau equations

Minimizing the free energy:
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“Maxwell equation”
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Rescaling GL equations
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Critical field of a film

Steps of the calculation:
- Write the energy difference between S and N phases;
- Find at which field the energies are the same (depends on
- Solve GL equations and find the order parameter;
- Find the critical field

Ψ)

Results: Thick films, d δ (1 / )c cbH H dδ= + 0 / 2cbH H=

Thin films d δ 2 6 /c cbH H dδ=
cH

cbH
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Critical field of a film

Let us now look at the details.

constΨ ≈
Thick films d δ 2 1Ψ ≈

Thin films d δ 0Ψ =

s nF F−

cbH 2Ψ

GL equations for 1κ give

First-order phase transition

Second-order phase transition

At certain thickness the transition order changes 5cd δ=
d δ
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Critical field of a film

Type-I superconductors: 1st order phase transition in the bulk
is realized by splitting into N and S layers

Interface energy: positive
Critical field of one layer is higher

Optimal thickness of a layer

Intermediate state!

Type II superconductors: does not work!

Interface energy: negative

Formation of infinitely thin layers is preferable

First-order phase transition is shifted to infinitely strong fields!

Type-II superconductors

Phase transition must be of the second order and occurs in the interval 
of fields

2cH H> (Upper critical field)
Even a small piece of superconductor is unstable
Normal metal

1cH H<
(Lower critical field)
Fully developed Meissner effect
Superconductor

1 2c cH H H< < Mixed state
No Meissner effect

Upper critical field

Two possible mechanisms:
- Spins of two electrons in a Cooper pair become parallel – too strong fields
- Larmor radius of a Cooper pair becomes shorter than ξ

Larmor radius: L
cp cr
eH eHξ
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p⊥ -component of momentum of the pair transverse to the 
magnetic field
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Lower critical field

What happens below 2 ?cH
Magnetic field penetrates the superconductor

Persistent currents (no decay): vortices!

Quantum vortices:
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Lower critical field

Vortex energy (per unit length):
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Vortex magnerization (per unit length):
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Lower critical field: the first vortex is formed
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What is the magnetic flux in a vortex?

( )
2

2* * 2
2
ie ej A
m mc

= − Ψ ∇Ψ−Ψ∇Ψ − Ψ

Current:

ie θΨ = Ψ
2

2 2e ej A
m mc

θ
⎛ ⎞

= Ψ ∇ −⎜ ⎟
⎝ ⎠

Far from the vortex core: no current

Let us integrate over a contour around the vortex center.
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Vortex lattice
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Close to lower critical field – sparse vortices

Form a triangular vortex lattice

Lattice period: determined by H

Per plaquette: half a vortex 
a

Total flux per plaquette:

2cH : vortices overlap 2
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Vortex motion

F j H∝ ×

If current is passed through a
superconductor in a mixed state:
Lorentz force acts at the core 
electrons

a

Resistance!! 2/N cH Hρ ρ∼

I

Vortex motion

transverse to the current

Motion of magnetic flux with a constant velocity

Electric field
1E H v
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Like if produced by vortex cores.

Pinning

Does it mean Type-II superconductors have resistance down to 
very low fields?

No, vortices do not move (at weak currents)

Pinning:

Is more favorable
than

It costs energy to depin a vortex.


