
charging energy: EC=e2/2C
• What is the capacitance of an isolated piece of metal (for example  a sphere)?

• What is the energy needed to charge the sphere with one electron (1/2QV with Q = e)?



overview energy scales



length scales: quantum regime
An important feature of mesoscopic and nanoscale structures is that their dimensions are 
COMPARABLE to the fundamental “size” of the electron causing their electrical properties 
to be strongly influenced by QUANTUM-MECHANICAL transport effects

In solid-state systems the size of the electron is essentially given by the FERMI
WAVELENGTH λF    (What is a typical value for a metal?)   

Eigler Group, IBM
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• IN THE FIGURES SHOWN HERE A SCANNING TUNNELING MICROSCOPE
IS USED TO MOVE IRON ATOMS ON THE SURFACE OF COPPER CREATING
A SO-CALLED QUANTUM CORRAL

• THE IRON ATOMS TRAP SURFACE ELECTRONS OF COPPER INSIDE
THE RING AND INTERFERENCE OF THE REFLECTED ELECTRON
WAVES PRODUCES THE RIPPLES INSIDE THE CORRAL

• THIS FIGURE SHOWS VERY NICELY THE WAVE-MECHANICAL PROPERTIES
OF THE ELECTRONS ON A SURFACE

⇒ In most METALS the electron density is very large (1021 cm-3) and the value of
the Fermi wavelength is consequently of order a FEW nanometers

⇒ In semiconductors however the LOWER carrier density (<<1021 cm-3) gives rise to 
wavelengths of several TENS of nanometers



scattering

Electron propagation in real materials is NOT an uninterrupted process but is instead 
DISRUPTED by electron SCATTERING from a number of different sources

The origin of such scattering can be ANY source of DISORDER that destroys the 
perfect symmetry of the crystal structure

⇒ Examples of such disorder include DEFECTS and IMPURITIES in the crystal 
structure but scattering from other ELECTRONS as well as from the quantized
LATTICE VIBRATIONS (phonons) is also possible

ELECTRONS IN A PERFECTLY PERIODIC 
POTENTIAL PROPAGATE WITHOUT BEING

SCATTERED … THIS WELL KNOWN RESULT
IS REFERRED TO AS BLOCH’S THEOREM

IN REAL CRYSTALS HOWEVER THE PRESENCE
OF INEVITABLE DISORDER DISRUPTS ELECTRON

PROPAGATION THROUGH THE CRYSTAL
STRUCTURE



elastic and inelastic scattering
To characterize electron transport in materials we therefore need to introduce various
materials-dependent LENGTH SCALES

* These length scales define the distance over which properties such as the electron 
MOMENTUM, ENERGY, and the PHASE of the wavefunction are RANDOMIZED by 
scattering in the crystal

* The values of these length scales are strongly MATERIAL-DEPENDENT and can also
vary significantly with TEMPERATURE (WHY?)
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From the GOLDEN RULE in quantum mechanics we know that scattering from a STATIC potential does 
NOT change the energy of the electron  ⇒ We therefore expect that scattering from FIXED impurities in 

the crystal will be ELASTIC while that from PHONONS and other ELECTRONS will be INELASTIC



mean free path (ℓ)

An important time scale for electron transport is the RELAXATION TIME (τ) which is the 
average time over which the initial momentum of the electron is REVERSED through a series 
of scattering events in the crystal  

* Using the relaxation time we may introduce the concept of the MEAN FREE PATH
which may be defined the average DISTANCE electrons travel before backscattering

* Some IMPORTANT QUANTITIES related to the relaxation time and mean free path
include

* There is an elastic mean free path (ℓe; scattering fixed impurities and boundaries) and 
an inelastic mean free path (ℓi; scattering off phonons and other electrons). 
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coherent versus incoherent transport
phase breaking length ℓϕ

To account for the disruption of interference effects in real materials we introduce the 
electron PHASE-BREAKING TIME (τφ) which can be thought of as the average time that 
elapses between dephasing events

* The PHASE-BREAKING LENGTH (lφ) can be defined as the average distance that 
electrons DIFFUSE in the material before their phase is disrupted through scattering

* To observe clear interference effects it is necessary that this length is COMPARABLE 
to the device sizes which often requires that experiments be performed at LOW
TEMPERATUES
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P. Mohanty et al.
Phys. Rev. Lett. 78, 3366 (1997)

• THE MEASURED VARIATION OF THE PHASE-BREAKING TIME WITH
TEMPERATURE IN SMALL GOLD WIRES

• OFTEN WE DOT DISTINGUISH BETWEEN INELASTIC MEAN FREE PATH 
AND THE PHASE BREAKING LENGTH. THEY ARE DIFFERENT THOUGH. 
WHICH ONE IS LARGER?



phase coherence

at low temperatures

The resistance of a small ring with a diameter of about 1 micron (the light gray areas in the inset) as 
a function of a magnetic field applied perpendicular to the ring plane shows periodic oscillations, 
known as Aharonov-Bohm oscillations. 

They indicate that a significant fraction of the electrons traverse the ring phase coherently.



transport regimes

Since submicron structures can now be fabricated on length scales SMALLER than the 
average impurity spacing in semiconductors it is possible to study electron transport in a 
number of different REGIMES

* In DIFFUSIVE conductors the mean free path is much SMALLER than the sample
dimensions and DISORDER scattering dominates

* In a QUASI-BALLISTIC conductor the mean free path and device size are
COMPARABLE

* A BALLISTIC conductor contains NO impurities and so the dominant source of
electron scattering is at the device BOUNDARIES (Is the resistance zero?) 

DIFFUSIVE TRANSPORT QUASI-BALLISTIC TRANSPORT BALLISTIC TRANSPORT



When is transport diffusive/ballistic? 
When is transport classical/quantum?

classical: λF, ℓi, ℓe << L
diffusive 

quantum: λF, ℓe << L, ℓi

classical: λF << L < ℓe, ℓi
ballistic 

quantum: λF, L < ℓe < ℓI




