D & S AE3-914

February 18, 2010

Lagrangian dynamics

Equations of motion?

 $\ddot{\theta} + \frac{3g}{2l}\sin\theta = 0$

Solution to the equations of motion?

Conservative system:

 $\frac{1}{6}ml^2\dot{\theta}^2 - \frac{1}{2}mgl\cos\theta = \mathbb{E}$

Phase portrait:

$$\theta(0), \dot{\theta}(0) \to \mathbb{E}$$

....

$$\dot{\theta} = \sqrt{\frac{6}{ml^2} \left(\mathbb{E} + \frac{1}{2} mgl\cos\theta \right)}$$

Equations of motion?

Is energy conserved? a) Yes b) No c) No idea

Is energy conserved? a) Yes b) No c) No idea

Is anything conserved? a) Yes b) No c) No idea

 $L = L(\mathbf{q}, \dot{\mathbf{q}}, t)$

 $\frac{dL}{dt} = \sum \frac{\partial L}{\partial q_k} \dot{q}_k + \sum \frac{\partial L}{\partial \dot{q}_k} \ddot{q}_k + \frac{\partial L}{\partial t}$

 $\frac{d}{dt} \left[\frac{\partial L(\mathbf{q}, \dot{\mathbf{q}}, t)}{\partial \dot{q}_k} \right] - \frac{\partial L(\mathbf{q}, \dot{\mathbf{q}}, t)}{\partial q_k} = 0$

 $\frac{\partial L}{\partial q_k} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right)$

 $\frac{dL}{dt} = \sum \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{a}_k}\right) \dot{q}_k + \sum \frac{\partial L}{\partial \dot{a}_k} \ddot{q}_k + \frac{\partial L}{\partial t}$

 $= \frac{d}{dt} \left(\sum \frac{\partial L}{\partial \dot{a}_k} \dot{q}_k \right) + \frac{\partial L}{\partial t}$

 $\frac{d}{dt} \left(\sum \frac{\partial L}{\partial \dot{q}_k} \dot{q}_k - L \right) = -\frac{\partial L}{\partial t}$

If $L \neq L(t)$ then $\sum \frac{\partial L}{\partial \dot{q}_k} \dot{q}_k - L = \text{constant}$

Jacobi energy integral

$$h(\mathbf{q}, \dot{\mathbf{q}}, t) = \sum \frac{\partial L}{\partial \dot{q}_k} \dot{q}_k - L$$

If $L \neq L(t)$ then *h* is conserved

Any quantity remaining constant in time is called an Integral of motion

Phase portrait:

$$\theta(0), \dot{\theta}(0) \to h$$

$$\dot{\theta} = \sqrt{\frac{6}{ml^2}} \left(h + \frac{1}{2}mgl\cos\theta + M\theta \right)$$

 $M = 2 \,\mathrm{Nm}$

 $M = 5 \,\mathrm{Nm}$

$M = 10 \,\mathrm{Nm}$

ω is constant
Lagrangian function L?
Jacobi energy integral h?
Equation of motion?

Is energy conserved? a) Yes b) No c) No idea

Is anything conserved? a) Yes b) No c) No idea

Is anything conserved? a)Yes: h b)No c)No idea

Is energy conserved? a) Yes b)No c) No idea

When all forces are conservative we have a conservative system

This typically means that the total energy is conserved, and it *equals* a (constant) Jacobi energy integral.

If we have a generalised coordinate q of a Lagrangian system such that

 $L = L(\dot{q})$ but $L \neq L(q)$

then q is an ignorable coordinate

If q is an ignorable coordinate $\frac{\partial L}{\partial q} = 0 \text{ and consequently}$ $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$

 $\frac{\partial L}{\partial \dot{q}} = C_q$

the generalised momentum associated with *q* is an **integral of motion**

Satellite system

