
nanomechanicsnanomechanics andand mesoscopicmesoscopic phononsphonons

Courtesy CT-Cnyugen (Berkeley)



Smaller, cheaper, faster, lower power 
consumption

“Phones of the future”: NEM-devices are in 
the right frequency range (1-5 GHz) to replace 
elements in cell phones 

Better frequency selectivity (higher Q)

Bulk passive components replaced by 
smaller size MEMS/NEMS components

New sensor applications

Why NEMS?  Device applicationsWhy NEMS?  Device applications

needed: high Q; high frequency

Nanotube RAM (including movie): 
http://www.nantero.com/index.html



mass sensing on the level of single moleculesmass sensing on the level of single molecules

Doubly-clamped beamDoubly-clamped beam
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7.7 MHz 10 x 0.2 x 0.1 230 fg 10,000 1.4×108 
" " " 100,000 1.4×107 

380 MHz 1 x 0.05 x 0.05 3 fg 10,000 1.8×106 
" " " 100,000 1.8×105 

7.7 GHz 0.1 x 0.01 x 0.01 23 ag 10,000 1400 
" " " 100,000 140 

low M (high f); high Q



carboncarbon--nanotube nanotube oscillators towards oscillators towards 
zeptogram zeptogram detectiondetection

M. Nishio et al. APL 86 (2005) 133111



nanorelaysnanorelays: : lowlow--powerpower mechanical switchesmechanical switches

S.N. Cha et al. APL 86 (2005) 083105 S.W. Lee et al. Nanoletters (2004) 



nanotubenanotube--nanomechanicsnanomechanics: rotator: rotator

rotating mirror

low-friction internal motion of the 
shells of a multi-wall nanotube 
makes motion possible

Fennimore et al, Nature 286 (1999) 2148



biobio--nanomechanics nanomechanics IIII

bio-motors:  ATP fuelled biomotor with 
a fluorescent filament of a few micron 
length attached 
(time between pictures 133 ms)

H. Nori et al. Nature 386 (1997) 299



nanomechanicsnanomechanics of breaking of breaking 
an atomic gold wirean atomic gold wire

estimate force:
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vibrationalvibrational modes in Ptmodes in Pt--HH22--Pt junctionsPt junctions

lithographic break junction
Inelastic tunneling spectroscopy (IETS)

Djukic et al. cond/mat 0409640
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CasimirCasimir force: a force of nothingforce: a force of nothing
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can be generalized to other 
geometries (3D, plate-
sphere), temperature effects 
and non-ideal conductors



vacuum fluctuations: vacuum fluctuations: Casimir Casimir effecteffect
In absence of electrostatic forces, attractive force between plate and sphere: F ∝ z-3

z-3

z-2

MEMS technology
(MicroElectroMechanical Systems)

H.B. Chan et al., Science 291 (2001) 1941



mesoscopicmesoscopic phononsphonons
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By nanofabrication techniques, we can enter domain where particle 
wavelength is comparable to channel dimensions.

Courtesy Keith Schwab



the thermal conductance “quantum”
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the thermal conductance “quantum”
derivation analogous to that of the electrical conductance quantum but

look at the energy flux (instead of electron flux) and use Bose-Einstein statistics
(consider two reservoirs with a T difference ∆T coupled by a 1D channel)

Wiedemann-Franz law:
Gth = LGT, L= Lorentz constant
With G0 = e2/h one finds Gth = π2kB

2T/3h

the existence of a thermal conductance 
quantum also indicates that it is difficult to 
cool nano-objects to their ground state !!



quantum phonon transportquantum phonon transport

g0 = π2kB
2 T/3h

Schwab et al, Nature 404 (2000) 974



eigenfrequencieseigenfrequencies cantilevers and beamscantilevers and beams

classical elasticity, Euler-Bernoulli theory:

solve and use appropriate boundary conditions



top-down fabrication: surface nanomachining

1.
starting material:
heterostructure
with a single
structural layer

4.
selective etch:
removes the
sacrificial layer;
final structures
are suspended

3.
pattern transfer:
anisotropic 
etch defines
structure
vertically

2.
mask definition:
by optical and
e-beam 
lithography
and thin film 
deposition

• high resolution e-beam lithography (x,y)  
• mono-crystalline epitaxial layers (z)

• GaAs-based systems
• Si-based systems (SOI)
• Silicon Carbide



eigenfrequencieseigenfrequencies cantilevercantilever
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boundary conditions:

for the first modes: not harmonic
sound velocity: v = (E/ρ)1/2



eigenmodeseigenmodes of cantilever of cantilever nanotube nanotube 

TEM work: Gao et al, PRL 85 (2000) 622 P. Poncheral et al., Science 283 (1999) 1513



eigenfrequencieseigenfrequencies double clamped beamsdouble clamped beams
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boundary conditions:

silicon:
L=1 µm, H=W=0.1 µm, f0= 1GHz

nanotube:
L= 100 nm, d = 1.4 nm, f0= 5 GHz



double clamped strings/beamsdouble clamped strings/beams
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magnetomotive method: conducting beam (50 Ω)

V

Cleland and Roukes, Sensors and Actuators 72, 256 (1999)



example of a measurementexample of a measurement

Rm ∝ B2

Q decreases 
with B

For Q > 10: response of the damped, driven the same as that of a harmonic oscillator.
Lorentzian peak shape; the width defines the Q-factor.



increasing drive: nonlinear response increasing drive: nonlinear response 
((DuffingDuffing oscillator)oscillator)

“Jimmy Hendrix regime”

Husain et al, APL 83 (2003) 1240

interesting for applications (parametric amplification) and for new 
quantum effects (Thorwart et al. (2005)) 



quantumquantum--limited detection of motionlimited detection of motion

detection of gravitational waves

The MiniGRAIL detector is a cryogenic 68 cm 
diameter spherical gravitational wave antenna 
made of CuAl(6%) alloy with a mass of 1400 
Kg, a resonance frequency of 2.9 kHz and a 
bandwidth around 230 Hz, possibly higher. 
The quantum-limited strain sensitivity dL/L 
would be ~4x10-21. The antenna will operate at 
a temperature of 20 mK. An other similar 
detector is being built in São Paulo, which will 
strongly increase the chances of detection by 
looking at coincidences. The sources we are 
aiming at are for instance, non-axisymmetric
instabilities in rotating single and binary 
neutron stars, small black-hole or neutron-
star mergers etc. 

MiniGRAIL: Frossati (Leiden University)



quantum effects in a harmonic oscillatorquantum effects in a harmonic oscillator
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zero point motionzero point motion

expected rms displacement noise of a 4.4 GHz 
nanotube resonator as a function of temperature

needed: high Q; high frequency, 
low mass



MEMS devices as electrometersMEMS devices as electrometers

•measured sensitivity (300 K): 0.1 eHz-1/2

•ultimate sens. (300 K): 2 x 10 -5 eHz-1/2

Cleland and Roukes, Nature 392 (1998) 160



towardstowards zerozero--point motion detection using point motion detection using 
a SET and a mixing techniquea SET and a mixing technique

0
0 ωm

x h
=

x0 a factor 100 above the quantum limit; Nth = 10

Knobel and Cleland, Nature 424 (2003) 291



almostalmost quantum detection limit with RFquantum detection limit with RF--SETSET

22
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RMSB xmTk ω=

x0 a factor 4.3 above the quantum limit; Nth = 58

LaHaye et al., Science 304 (2004) 74



Coulomb blockade in SET that can moveCoulomb blockade in SET that can move

• usual CB theory does not apply since  
the gate capacitance is distance 
dependent

• mechanical degrees of freedom via 
classical theory of elasticity

• nanotube modeled as an elastic rod

• applicable to other suspended 
structures

• nanotube: hope for high Q-factors 
(smooth on a nanometer level)

S. Sapmaz et al., PRB 67 (2003) 235414



bottombottom--up fabrication: suspended up fabrication: suspended nanotubesnanotubes

AFM markers

catalyst

ISWNTs

electrodes catalyst + nanotubes

electrodes ISWNT lateral Gate



bottombottom--up fabrication: suspended up fabrication: suspended nanotubesnanotubes

Aunanotube

Crbefore etching
SiO2

doped-Si (backgate)

after etching 
in acid (BHF)

Nygård and Cobden, APL 79 (2001) 4216



electrostatic term in Coulomb Blockade is electrostatic term in Coulomb Blockade is 
displacement dependentdisplacement dependent
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the the nanotube nanotube moves in discrete steps every time moves in discrete steps every time 
an additional electron tunnels onto it an additional electron tunnels onto it 

0 10

1

2

3

~V
G

2/3

~V
G

2

 

z m
ax

 (n
m

)
V

G
 (V)

S. Sapmaz et al., PRB 67 (2003) 235414

r = 0.65

r = 0.65 nm 
L = 500 nm
R = 100 nm
T0= 0; CR=CL=0

weak bending:
zmax < r, zmax ∝ VG

2

strong bending:
zmax > r, zmax ∝ VG

2/3

As soon as zmax>d, the strain due to deformation has to be taken into account
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between the harmonic 
oscillator wave functions in the 

initial ground state and the 
displaced final electronic state Braig and Flensberg, PRB 68 (2003) 205323



FrankFrank--Condon factors reproduce step heights in Condon factors reproduce step heights in 
the experiment reasonably well

g = 0.5g = 0.95
g = 0.9

the experiment reasonably well

e-ph coupling constant is about 1 and approximately length and gate 
independent: displacement ~1 pm !

a nanotube of 1 micron length acts as a single quantum harmonic 
oscillator (ћω >> kBT) !!!

A better fit may be obtained if the influence of a gate voltage and asymmetric coupling is considered (Braig and Flensberg, 2003) or if 
non-equilibrium phonons are present (Mitra, Aleiner and Milles, 2004); Negative Differential Resistance not understood



some some vibrationalvibrational modes modes nanotubesnanotubes

squashing mode
f~0.54-1.0 THz, 
E~2.2-4.2 meV

bending 
mode

f~2.5 GHz-25 MHz
(100 nm-1 µm)
E~10-0.1 µeV

Length indep.
Length dep.

radial breathing mode
f~4.5-6.2 THz
E~18-25 meV

f~1.3-0.13 THz
(100 nm-1 µm)
E~600-60 µeV

stretching 
(longitudinal) 
mode



data fit longitudinal (stretching) modes the data fit longitudinal (stretching) modes the 
bestbest

stretching
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