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 Network calculations

4.1 Introduction

Network calculations assist in the analysis of flows
en pressures in pressurised networks or open chan-
nel networks. The calculation of the flow through a
single pipe or open channel is relatively simple and
can be done with a manual calculation as is demon-
strated in the previous chapters. In a network the
calculation of flows and pressures is more compli-
cated because of the magnitude of boundary condi-
tions and the interconnection of the pipes or chan-
nels. Computerised calculations are necessary to
analyse the behaviour of a network within a reason-
able time limit.
The first network calculations were done by hand
using methods like Newton Raphson and Hardy-
Cross in pressure or volume flow equalisation. It is
obvious that only networks with a moderate number
of pipes and nodes can be analysed. A popular cita-
tion in that light is a quote ‘Every network hydraulic
problem can be analysed with a model with 50 nodes
and 50 pipes.’
Looking at the principle of hydraulic relevance (see
paragraph XX) this quote holds true, but it takes a
large amount of experience and hydraulic insight to
be able to model networks to this size and to trans-
late and interpret the results for the original network.
With the development of computers starting in the
’60-s from last century, the first calculation programs
came available. Because of the costs of the programs
and the CPU-time consumed these calculations were
mostly used for design purposes for larger pipes and
projects. From the early ’80-s of the last century the
first calculation programs for personal computer were
developed. These programs are best described as
automated manual calculations and were capable of
handling larger networks.
Rising popularity, availability and capacity of personal
computers stimulated the development of calcula-
tion software. New techniques are developed to ac-
tually use the capacity of computers and combine
this with an integral approach for network calcula-
tion. The linear programming method is made and
forms the calculation core of much commercially
available software.

What stayed over the years is that networks are com-
plicated and that simulation is an approximation of
reality. Assumptions are made to make mathemati-
cal modelling possible, continuous processes are
transformed to discrete processes that in their turn

are translated to computer codes. The real world is
translated in discrete input and calculations are made.
Schematically this process is represented in figure
4.1

Computer aided modelling of reality gives better in-
sight in the dynamics of real processes. They are
however not more than an approximation of reality
and common sense is indispensable to judge and
use the results of calculations.
A ten-angular figure is a good mathematical approxi-
mation of a circle, but turned into a wheel it will give
a bumpy ride.
In this chapter the background of commercially avail-
able models for drinking water systems (pressurised)
and sewerage systems (open channels) is explained.
Apart from the possibilities of these models the limi-
tations will be demonstrated.

4.2 Pressurised pipes: Drinking water
models

4.2.1 Basic equations
The basic equation for determining the pressure loss
in a pipe is the Darcy-Weissbach equation (see XX)
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Together with the White-Colebrook formula to cal-
culate the value of λ this is one equation describing
the steady state of a network.
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The value of λ is dependent of the hydraulic situa-
tion in the pipe, characterised with the Reynolds
number and the physical properties as the diameter
and the roughness.
For the unique situation of the calculated steady state
however the value is fixed, making the Darcy-
Weissbach formula 2

2 1H H H Qα∆ = − =  which is
a one-dimensional relation between volume flow and
pressure drop. The formula can graphically be rep-
resented in the so-called Moody diagram. (fig 4.2)

4.2.2 Modelling the network
For analysis purposes a network is modelled as a
system of pipes that are joined together at nodes.
This makes a system of interconnected pipes that
form loops. Friction losses in pipes can easily be
calculated. The pipes are connected to the rest of
the network at one end that automatically gives the
pressure boundary at that side. The demand at the
other side is given, so the pressure drop can be cal-
culated end consecutively the pressure at the de-
mand point.
All the pressure and demand boundaries are con-
centrated in the nodes and all the friction losses are
concentrated in the pipes. Other losses are dealt with
in the model as friction losses, which are velocity
dependent.
With the help of Darcy-Weissbach and the laws of
Kirchhoff a mathematical model can be made and
solved.

4.2.3 Kirchhoff’s laws
Kichhoff’s laws are used to put together the system
of equations to calculate the pressures and volume
flows in a network. The laws are transcripted from
the electrical analogy (see text box):
o Mass balance in a node is zero. The sum of flows

towards a node equals the sum of flows leaving

the node. 0
n

Q =∑
o The pressure losses in a loop of pipes equals zero.

0
loep

H =∑

Schematically the laws are given in figure 4.4

Applying the Kirchhoff laws to every node and every
loop in a network gives the set of equations that

Fig. 4.2 - Moody diagram

Fig 4.3 - Gustav Robert Kirchhoff

Gustav Robert Kirchhoff (1824-1887 laid the math-
ematical fundaments bearing the analysis of piped
water networks. In 1845 he announced the laws
that were named after him as student of the Uni-
versity of Königsberg. He formulated these laws
to allow calculation of currents, voltages and re-
sistance in electrical circuits with multiple loops,
extending the work of Ohm. Kirchhoff’s laws are
also applicable for piped networks as they follow
the electrical analogy.
Kirchhoff considered an electrical network con-
sisting of circuits joined at nodes of the network
and gave laws which reduce the calculation of the
currents in each loop to the solution of algebraic
equations. The first law states that the sum of the
currents into a given node equals the sum of the
currents out of that node. The second law states
that the sum of electromotive forces in a loop in
the network equals the sum of potential drops, or
voltages across each of the resistances, in the
loop.
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solves the pressures in the nodes and the volume
flows in the pipes, given a network and sufficient
boundary conditions.

Consider a network with N nodes and X pipes.
o For every node in the network the mass balance

can be established. (first law of Kirchhoff) This
gives N equations with x unknown being the flows
in X pipes (The demands in a node are known).

o The relation between the flows in the pipes and
the pressures in the nodes is given by the Darcy
Weissbach and White-Colebrook law:
Q2

x = f(∆Hx) = Hn – H(n-1)
o Every flow in X pipes can be transformed to an

equation in one or more of the pressures in the
nodes. This gives X equations with N unknown.

o The set of equations is reduced to N equations
with N unknown, which can mathematically be
solved.

Complication is that the relation between Q and H is
non-lineair so the set equations can only be solved
in an iterative way. Basically there are two methods:
o Hardy-Cross, pressure or volume flow equalisa-

tion
o Linear programming

Hardy-Cross equalisation
The Hardy-Cross methods are the conventional
methods for solving non lineair systems. Originally
this method was used in manual network calcula-
tion. Programming the method used very little com-
puter memory. This accounts for the popularity of
this method in the first generation of network calcu-
lation programs. The method still is the base for some
networks programs because of the simplicity and the
possibility to use the method on simple computers.

Pressure equalisation method
The method consists of a loop of steps:
o Assume/estimate pressures in all nodes
o Apply Kirchhof’s first law: mass balance in every

node is zero. Adjust the pressure in the node con-
sidered in such a way that the volume flows in-
duced from the other nodes meet this law.

o Take the next node and apply Kirchhoff’s first law
and adjust the pressure until the flows meet the
law.

o Repeat this cycle for all nodes until the largest
adjustment of the pressure in the nodes in one
cycle is below a certain threshold.

In appendix 4.1 this is illustrated in more detail.
The method is sensitive for the first estimation of
the pressures and for large differences in connected
pipes, for instance one node with a pipe of 500 mm
and a pipe of 100 mm. An adjustment in pressure in
the considered node causes a volume flow adjust-
ment in the 500 mm pipe that is 3125 (55) times big-
ger as the adjustment in the 100 mm pipe.

Volume flow equalisation
This method also considers an iterative cycle of
steps:
o Assume/estimate volume flow in all pipes;
o Apply Kirchhoff’s second law to a loop. Adjust the

volume flows with ∆Q (all flows same adjustment)
until the second law is met.

o Take the next loop and apply Kirchhoff’s second
law, adjust until…etc.

o Calculate the pressures and repeat flow adjust-
ments until the largest adjustment in one cycle is
smaller than a certain threshold.

In appendix 4.2 this is illustrated in more detail.
This method is also sensitive for the first estimation.
Less sensitivity is experienced towards nodes with
larger and smaller pipes.

Linear programming
Because the relation between pressure drop and
volume flow is non-linear it is impossible to solve
the matrix of equations. The method of linear pro-
gramming is based on a linearisation of the Darcy-
Weissbach equation. The equation is written as
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Fig. 4.4 - Scheme Kirchhoff’s laws
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Applying the two laws of Kirchhoff makes it possible
to establish the matrix for the whole network. The
result is presented below. More detail is found in
appendix 4.3
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The calculation *
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=  cycle is as follows:

o Assume pressures or volume flows in all node or
pipes

o Calculate Q*
o Solve the matrix
o Calculate new pressures and restart cycle with

calculating Q*
o Repeat until the differences between the calcu-

lated pressures from the last step and the present
step are below a certain threshold.

Advantage of the linear programming is the relative
independence of initial estimations and the robust-
ness of the calculation scheme.

Boundary conditions and input
The boundary conditions as demands and pressures
induce the flows in a network. Normally the ‘down-
stream’ boundary is a demand and the ‘upstream’
boundary is an input or pressure delivered by a high
level reservoir or a pump.
As demonstrated it is imperative that for every node
one boundary condition is given, either be it a vol-
ume flow (supply to customers) or a pressure. Gen-
erally nodes in a network can be distinguished as
supply nodes (outgoing flow) or as input node (in-
coming flow).
Looking at the Darcy-Weisbach formula presented
as H1- H2 = R Q2 shows that three possibilities exist
for an individual pipe:
o The flow and one pressure are given; the other

pressure is calculated. An example is a network

fed by a high level reservoir. The flow are the
supplies to customers, the pressure is the level
in the high reservoir (Fig. 4.5).

o Two pressures are given; the flow is calculated.
An example of this situation is for instance the
pipe (or network) connecting two high level res-
ervoirs (Fig. 4.6);

o The flow and a Q-H relation. This is the most com-
mon network with a pump curve (see section
3.2.1) as input and flows as supply to customers
(Fig. 4.7).

Following these obligatory boundaries there should
be at least one pressure boundary (High level reser-
voir or pump curve) and one flow boundary (supply
condition).

An input or supply for the network can be modelled
as a pump. Basically a pump is treated in a network
model as a pipe with a pressure increase instead of
a pressure loss. The pump normally is modelled us-
ing a suction node and a pressure node. The con-
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Fig. 4.6 - Two pressures given, flow to calculate
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necting pipe has the Q-H-relation in a function for-
mat.

Accuracy of the calculation
Lots of data are necessary to make a model of a
(drinking water) network. All geometrical data as
length, material, roughness, internal diameter, etc.
will be drawn from registration systems. This can be
either digital as computer databases or analogue as
maps of the system.
Presently most drinking water companies have these
data digitally available. The databases are made up
from analogue maps, originally produced at the con-
struction time of the pipes. This means that some of
the information is decades or even a century old.

Besides the geometrical data the supply data needs
special attention. As shown in lecture notes CT3420
it is difficult to get accurate data on supply, espe-
cially on a detailed level.
Although network calculations are static calculations:
only one moment in time is calculated, the dynam-
ics of the supply and demand is important. The situ-
ation in the night is completely different from the situ-
ation during the day.
In billing systems, the data on supply are available
on an individual connection level but on a year ba-
sis. This is too detailed information and some way of
data management is necessary to handle this into
information on node level.

The governing formula (Darcy Weissbach) shows the
relative importance of the data:

2
2 1 50,0826
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Assume the case that pressure H1 has to be calcu-
lated. Input data are H2, L, D, Q and λ  (indirectly the
roughness kN). Considered are the effects of a 10%
error in the accuracy of each of the input data:

• 10% error in H2 gives a the same absolute error
in H1:
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• 10% error in L gives a 10% error in pressure drop
over the pipe
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• 10% error in internal diameter gives almost 50 -
70% error in pressure drop over the pipe
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• 10% error in ë gives a 10% error in pressure drop
over the pipe. A 10% error in ë is caused by an
error in roughness of 20-30%
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Fig. 4.7 - Flow and Q-H relation given pressure
calculated from upstream QH relation,
downstream pressure to calculate
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Conclusion is that data on actual internal diameters
is most important, followed by data on length and
supply and on pressure boundaries. This is espe-
cially important in older cast iron pipes, as there is a
large influence on the internal diameter of the volu-
minous encrustations.
As with many calculations the saying goes: garbage
in = garbage out.

4.2.4 Time dependent calculations
The governing formula describing the flow in closed
pressurised pipes is the Darcy-Weissbach equation.
This formula has no time dependency in it, making it
possible to make ‘snap shot’ calculations. In reality
however there is a constant changing situation of
demand boundary conditions. The demand varies
over the day as shown in Fig. 3.21.The time scale of
the changing is too short to take into account the
inertia terms as is in the water hammer analysis (see
chapter 2). The interest of water companies is to
make an extended time analysis of the network on
the time scale of hours or days. Most software al-
lows for this type of analysis by automatically per-
forming a series of calculations. The boundaries for
the calculation are time dependent demands in
nodes. The input boundaries are formed by pump
curves and high-level reservoirs, allowing for chang-
ing conditions.
An extended time analysis is consequensive series
of “snapshot” calculation. If supply boundaries are
formed with pumpcurves no special measures are
necssary.

A special place in these analyses is taken by high-
level reservoirs. In the snap shot calculation the level

of the reservoir is fixed and is treated as a fixed pres-
sure point. The calculated volume flow in or out of
the reservoir will change the level of the reservoir
and thus the constant pressure. This changing level
can be dealt with in several ways. Mostly a predic-
tor-corrector method is used that calculates the situ-
ation at a certain calculation time point t0. The in- or
outflow of the reservoir is calculated using the level
of the reservoir at that time. During the time step,
progressing to time t1, the in- or outflow will influ-
ence the level in the reservoir. Considering this in-
or outflow to be constant over the time step this will
give another level in the reservoir at the end of the

time step: 1 0

Q t
H H

A
∆

= +  with ∆t the time step and

A the surface of the reservoir. Now a calculation can
be made with an average of the H1 and H0. This is
considered to be the actual height of the reservoir
level over the time step ∆t. Fig. 4.9 illustrates this.

4.3 Models in urban drainage

4.3.1 Processes
As discussed earlier, a model is a description of re-
ality, in this paragraph the focus is on mathematical
models used in hydrodynamic calculations in urban
drainage. This implies that the mathematical descrip-
tion of processes involved in the water movements
in urban drainage systems is studied. When discuss-
ing these models a distinction has to be made in
components constituting a model. The definitions as

Fig. 4.8 - Encrusted cast iron pipe
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Fig. 4.9 - Water tower in extende time analysis
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formulated by van Mameren & Clemens (1997) are
used; a model is built up from three basic compo-
nents (see Figure 4.10):
- A description of the hydraulic processes (mostly

referred to as process model).
- A geometrical description of the system under

study (the database or geometrical model).
- Hydraulic loads, making a distinction between dry

weather conditions and storm conditions.

The hydraulic processes involved are usually distin-
guished into two main groups:
- The processes in the urban drainage system (the

hydraulic model);
- The processes involved in the transformation from

rain intensities to run-off (the hydrological model);

In fact, calculation models in urban drainage contain
therefore two more or less separate process descrip-
tions:
- The hydrological model (describing run-off proc-

esses).
- The hydraulic model.

This has implications for the calibration, since in most
practical cases o nly water levels and/or discharges
in the sewer system can be measured, implying that
the runoff is not quantified as a separate quantity. In
fact, the output of the hydrological model is the input
for the hydraulic model, in this manner creating a
time variable boundary condition.

Starting in the early 1970’s software tools were de-
veloped in order to be able to handle the massive
calculation effort involved in major hydrodynamic

simulations on urban drainage networks.
4.3.2 Loads
When studying the processes taking place in an ur-
ban drainage system two modes are distinguished:
- Dry Weather Flow (DWF).
- Storm conditions.

In purely DWF systems, the DWF is the main con-
tributing flow of water. Although in practical cases
some storm water will enter the system due to either
faulty connections or storm water from roofs con-
nected to the system in order to create some regular
flushing of the system, see e.g. Meijer (1998). On
the other hand, in pure storm water systems only
storm water will enter the system; in this case, also
some DWF may enter the system due to mis-con-
nections. In combined systems and improved sepa-
rated systems, both sources of water are present.
The DWF is a result of different sources of water:
- Domestic wastewater.
- Industrial waste water.
- Drain water due to leakage.

Domestic wastewater consists for the major part out
of discharged drinking water after use for cooking,
toilet flushing, washing etc. Therefore, the figures
for water consumption are usually used in order to
estimate the quantity of the DWF.
Drinking water consumption in households shows a
periodic pattern in time, as does the actual DWF in a
sewer system. However there is a phase shift and a
difference in amplitude between them. This is be-
cause drinking water is temporarily stored in the
households before it is discharged and because a
certain portion of the drinking water does not enter
the drainage system at all (due to e.g. evaporation
and garden sprinkling). Therefore, the time patterns
present in drinking water consumption should not be
used for making accurate estimates of the DWF pat-
tern.
Especially in older systems, the portion of drainage
water can be a considerable fraction (up to 50%) of
the DWF flow in a system. This is due to the combi-
nation of two factors:
- Leaking joints.
- High groundwater levels.

In cases in which leaking joints are present and the
groundwater levels are beneath (part) of the system)
DWF exfiltrates. This latter process is in practice hard
to detect.

Calculation
model

Hydraulic loads

Sewer system
Drained area’s
coefficients

Run-off processes
In sewer hydraulic processes

Calculation
model

Calculation
model

Calculation
model

Hydraulic loads

Sewer system
Drained area’s
coefficients

Run-off processes
In sewer hydraulic processes

Fig. 4.10 - Components of a model in urban drainage
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Before entering the drainage system, storm water
flows over the receiving areas like streets and roofs.
The processes transforming rain intensity patters into
inflow patterns in the drainage system are (see fig
4.11):
- Wetting of dry surface.
- Infiltration.
- Storage in local surface depressions.
- Evaporation.
- Flow over the receiving area.

This implies that the inflow intensity pattern devi-
ates from the run-off intensity pattern, therefore when
modelling an urban drainage system the pattern in
the run-off intensities and the locations at which this
storm water enters the systems must be known. To
this end hydrological models are used. Run-off and
its practical modelling is discussed later on.

4.4 Hydrological models

4.4.1 General
The transformation of rain falling on a surface into
the actual amount of storm water being discharged
into a drainage system is subject of extensive re-
search over the last decades.
Theoretically, every process involved can be accu-
rately described using a deterministic model. For

practical use however, such an approach is inhibited
due to the many model parameters involved and the
large number of initial and atmospheric conditions
that must be known. This will become clear in the
next sections on the individual processes involved
in the run-off process.

4.4.2 Storage in surface depressions and
initial losses

When rain falls on a surface this will not result in an
immediate discharge into the drainage system. When
the surface is dry at the outset of the rain, initial losses
will occur. These initial losses depend on the type of
surface and the humidity and temperature of the
surface at the start. A certain amount of the rain is
caught in small local depressions in the pavement.
Since it is virtually impossible to describe the geom-
etry of the pavement for a whole catchment area in
detail in the modelling practice, a constant value is
used varying with the type of pavement.
Exact figures for initial losses and storage losses are
scarcely found in literature. In Table  results of vari-
ous field data obtained from literature (see e.g.
Pecher (1969), NWRW 4.3 (1989) and van de Ven
(1989)) are summarised. Apart from the type of pave-
ment, its state of maintenance is an important factor
influencing the parameters for depression storage.
Therefore, the magnitude of depression storage
changes over time in a given catchment. Further-
more, it must be mentioned that water stored in de-
pressions vanishes over time between successive
storms due to evaporation and infiltration.
The available amount of surface storage at the start
of an individual storm therefore depends on the his-
tory as well.

The state of maintenance of paved areas does have
an influence of the surface storage capacity. In this
sense, neglecting maintenance of roads is advanta-
geous since it decreases the total hydraulic load on
the receiving urban drainage system. Kidd (1978)
related the surface storage to the terrain slope by:

0.490.77 tb i−=

 Flat roofs Tilted 
roofs 

Impervious 
road areas 

Semi-impervious roads 

Initial losses 0-0.5 mm 0.1 mm 0.07-0.7 mm 0-1.5 mm 
surface storage  2-2.5 mm 0.1 mm 0.3-1.7 mm 0.8-6.0 mm 
 

Table 4.1 - Initial losses and surface storage

 

Fig. 4.11 - Processes involved in modelling urban
drainage systems
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In which:
b surface storage (mm)
it terrainslope (%)

4.4.3 Evaporation
A relevant process in relation to run-off is evapora-
tion. Surface storage is made available due to infil-
tration and evaporation. The evaporation rate de-
pends on several variables:
- Temperature.
- Wind speed.
- Atmospheric humidity.
- Rate of heat influx.
- Intensity of sunshine.
- Colour of the surface.

The variables mentioned are in general not known
in any detail when modelling an urban drainage sys-
tem; therefore monthly average figures are normally
applied (the so-called Penman evaporation (Raudkivi
(1979)).
In his research into run-off models, Van de Ven (1989)
concluded that it is impossible to quantify the evapo-

ration term for individual storms. Therefore, a prac-
tical approach is usually adopted. This implies that
the evaporation either is neglected during a storm or
is set to a constant value equal to that of an open
water surface. In fig 4.13 the monthly-averaged
evaporation-rate values for De Bilt in the Netherlands
are shown.

4.4.4 Infiltration
Rain falling on pervious or semi-pervious area (e.g.
grass, clinkers ) will partly infiltrate into the
groundwater. The process of infiltration is compli-
cated; depending of the initial conditions the infiltra-
tion rate will decrease with time because the unsatu-
rated zone is filled (see e.g. Mein & Larson (1973)).
As soon as this zone has become saturated, the mini-
mum infiltration rate is reached. The infiltration ca-
pacity of the soil increases only after the precipita-
tion has stopped and the storage in the unsaturated
zone has been emptied. In literature several values
for infiltration rates are reported (see e.g. Ando
(1984), Bebelaar & Bakker (1981), de Roo (1982),
van Dam & Schotkamp (1983) and van de Ven
(1989)), in table 4.2 the ranges found are shown.

Several models are applied in practice to describe
the infiltration process:

Hillel&Gardner (1970): cumI at b c= + −

In which:
Icum cumulative infiltration since t=0 in mm
a,b,c parameters depending on transmissivity, hu-

midity and crust resistance.

Philip : cumI a t bt= +

In which:
Icum cumulative infiltration since t=0 in mm
a,b,c parameters depending on transmissivity, hu-

midity and crust resistance.

Relation between terrain slope and surface storage, according to Kidd(1978)
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Fig. 4.12 - Relation between terrain slope and surface
storage (Kidd 1978)
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Fig. 4.13 - Monthly averaged evaporation values,
de Bilt, period 1955-1979

 infiltration values (mm/h) 
Concrete clinkers 7-353 
Tiles 1-254 
Grass 10-500 
soil without vegetation 10-100 
 

Table 4.2 - Ranges for the infiltration capacity obtained
from literature
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A widely accepted model is the model suggested by
Horton (1940). In this model, it is assumed that a
maximum and minimum value limit the infiltration
rate. When infiltration starts at a given rate it will
decrease with time due to saturation of the soil. Even-
tually it will reach a minimum value when the stor-
age capacity of the pores is filled. As soon as the
surface area is dried up (due to evaporation and in-
filtration), this storage capacity becomes available
again. This implies the infiltration rate is increasing
again with time. These processes are described by
the following formulas

Decrease: ( ) ( ) ak t
e b ef t f f f e−= + −

Increase: ( ) ( ) dk t
b b ef t f f f e−= − −

This model contains four parameters, the maximum
infiltration capacity fb (assuming the unsaturated zone
is fully available), a minimum infiltration capacity fe
(the storage in the unsaturated zone is filled) and
the recession factors ka and kd . Basically, these val-
ues depend on the type of soil and the momentary
groundwater level.

A very simple model is the constant infiltration rate
model. In this model the infiltration rate is set to a
constant; the value depends only on the characteris-
tics of the particular surface.
Van de Ven (1989) made a comparison of several
infiltration models based on in-situ measurements.
He concluded that the models as defined by Hillel &
Gardner (1970), Horton (1940) and Philip did not
show significant differences. Furthermore, he con-
cluded that the constant infiltration rate model was
less accurate than the other models. However, when
studying the reported experimental results, the con-
stant rate model could be used for practical purposes
according to van de Ven. This is mainly of impor-
tance since this simple model calls for only one pa-
rameter to be estimated, making calibration in prac-
tice simpler and enhancing the reliability of the pa-
rameter values obtained in a calibration. Intable 4.3,
the value for R2 (model efficiency in a comparison
with field measurements) is tabulated for the infiltra-

tion models mentioned. As can be seen the
Hillel&Gardner model gives the best results, the dif-
ferences however are relatively small.

Furthermore, it is argued that since exact values for
evaporation cannot be given, a very refined model
for infiltration is of academic value only. In relation
to the hydraulic load on an urban drainage system, it
is only of importance to have an estimate for the
net-rain and an estimate for the available storage
capacity on surface areas.

4.4.5 Run-off
Once the amount of rain that has fallen becomes
larger than the sum of the initial losses, the losses in
local depressions and the evaporation, run-off oc-
curs. So, the moment at which after the start of the
storm water starts to run-off (ts) is calculated from
the integral equation:

0

( ( ) ( ) ( ))
st t

t

r t i t e t dt S W
=

=

− − = +∫

In which:
 S the surface storage in mm
W the initial loss in mm
r(t) the rain intensity as a function of time
i(t) the infiltration rate as a function of time
e(t) the evaporation as a function of time

So, for t>ts run-off to the drainage system occurs if
r(t)>i(t)+e(t). The amount of rain resulting in run-off
is defined as the net-rain-intensity pn(t)=r(t)-i(t)-e(t).

Several models are developed to describe the trans-
formation from pn(t) into the actual discharge enter-
ing a drainage system q(t). Some of the most widely
used models will be discussed briefly in the annex
4.4.

A practical comparison of some of the models dis-
cussed are summarised in figure 1

 Hillel&Gardner Philip Horton Constant 
Copper slug 0.993 0.988 0.977 0.966 
Concrete clinker 0.993 0.992 0.997 0.954 
Concrete tiles 0.995 0.991 0.989 0.97 
 

Table 4.3 - R2 values for several infiltration models reported by van de Ven (1989)
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From these results the following practical conclusions
are draw:
- All models show a more or less equal character-

istic response to the storm imposed
- Simple models (like the NWRW 4.3 model) per-

form reasonably well, while posing the advantage
of being simple to implement.

When comparing several complete run-off models
(i.e. surface storage model + infiltration model +
Routing model) with respect to the number of pa-
rameters to be specified per area the following fig-
ures are obtained (see table 4.4)

From a practical point of view, a model with the small-
est number of parameters is to be preferred. This is
even more so when one realises that some param-
eters (like e.g. ‘n’ and ‘k’ for the Nash cascade) can-
not be quantified from simple measurements since
they represent no physically meaning-full param-
eters. In this sense run-off models are to be regarded
as black or grey box models. The notion of using
preferably measurable parameters and models with
a minimum number of parameters is also supported
when calibrating models. A reduction of the number
of parameters in a calibration process increases the

quality of the calibrated result. Furthermore, when
using models having physical meaningful parameters
it is possible to crosscheck the parameter values
obtained from a calibration with independent sepa-
rate measurements.
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Horton:           V = 248.0 m³

Green Ampt: V = 248.9 m³
variable PR:  V = 243.7 m³

SCS:              V = 243.1 m³

Fig. 4.14 - Some results for different run-offs models
imposing a block storm

Model
parameters

Numerical
parameters

Empirical
parameters

Horton 4 1

Nash 2 1

Kidd 1 2

Hillel&Gardner 3 1

Philip 2 1

Desbordes 9 2 2

Table 4.4 - Number of parameters in several models
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Annex 4.1

Method Hardy-Cross: pressure equalisation method

Consider a node called ‘1’ with four pipes (2-5). The
demand at node 1 is Q1.

Applying the first Kirchhoff law gives:

( )
5

1 1
2

0j
j

Q Q
=

− =∑

Darcy Weissbach gives H RQ Q∆ =

Rewriting Darcy Weissbach gives

*( )Q sign H R H= ∆ ∆i i

With 
2 5

*

8
g D

R
L

π
λ

=

R* is a factor dependant of the characteristics of the
pipe as length, diameter and roughness and must
be determined iteratively.

Assume now a start value for a pressure in every
node. The pressure in node 1 has to be corrected
with ∆p.
Substitution of the rewritten Darcy-Weissbach in the
Kirchhoff equation gives

( )
5

*
1 1

2

( ) 0j j
j

sign H R H H p Q
=

 ∆ − − ∆ − =  ∑ i i

From this equation Äp can be solved using the Taylor
series. In general terms this is written as

( )2

( ) ( ) '( ) ''( )
2!
x

f x x f x x f x f x
∆

+ ∆ = + ∆ =i

If ( )( )f x x x x+ ∆ = + ∆

than ( ) 1
2

x x x x
x

+ ∆ = + ∆

Applied for the Kirchhoff equation this gives

*5
1*

1 1 1
2 1

( )
( ) 0

2

j
j j

j j

sign H R
sign H R H H p Q

H H=

 ∆ ∆ − − ∆ − =
 − 

∑
ii i

or

5
*
1 1 1

2

*5
1

2 1

( )

( )

2

j j
j

j

j j

sign H R H H Q
p

sign H R

H H

=

=

 ∆ − −  
∆ =

 ∆ 
 − 

∑

∑

i i

i

With this calculated Äp a new estimation can be
made and the new cycle can start until the value of
∆p drops below a certain threshold.

1

2

5

3

4

Q1

1

2

5

3

4

Q1

Fig. A4.1 Node 1
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Annex 4.2

Method Hardy-Cross: volume flow equalisation
method

Consider a network with 4 nodes and 5 pipes.

In the loop 1-2-3 the second law of Kirchhoff states

[ ]
3

1

3

i
1

pressure drops 0

R 0

i

i i
i

Q Q

=

=

=

  = 

∑

∑

with

2 5

8 i i
i

i

L
R

g D
λ

π
=

i
i

Assume now a start value for a pressure in every
node. Following these pressures the volume flow in
each pipe can be calculated. This flow has to be cor-
rected with ∆Q.
The second law of Kirchhoff than becomes

( )
3

i
1

R 0i i
i

Q Q Q Q
=

 − ∆ − ∆  = ∑

This gives two possibilities for further evaluation

( ) ( )
( ) ( )

22

22

2  when 

2  when 

i i i i i i i

i i i i i i i

Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q

− ∆ − ∆ = − ∆ + ∆ ≥ ∆

− ∆ − ∆ = − − ∆ − ∆ ≤ ∆

i
i

Only the first equation is further elaborated in the
second law of Kirchhoff. The second one can be
evaluated similarly.

( ) ( )
( )

2 22 2
1 1 1 1 1 2 2 2 2 2

22
3 3 3 3 3

2 2

2 0

R Q R Q Q R Q R Q R Q Q R Q

R Q R Q Q R Q

− ∆ + ∆ + − ∆ + ∆ +

− ∆ + ∆ =

When the iteration process have progressed, the
terms (∆Q)2 will become negligible, leaving the equa-
tion as:

3 3
2

1 1

2 0i i i i
i i

R Q Q R Q
= =

− ∆ =∑ ∑i i
and

3
2

1
3

1

2

i i
i

i i
i

R Q
Q

R Q

=

=

∆ =
∑

∑

In general terms this becomes

2

1

1

2

n

ij ij
i

j n

ij ij
i

R Q
Q

R Q

=

=

∆ =
∑

∑

Nota bene:
this elaboration is only valid for Qij ≥ ∆Qj.
For Qij ≤ ∆Qj the elaboration is similar.

With the calculated ∆Qj for each pipe the new esti-
mations for Q can be made and the process can start
again. The cycle is repeated until the largest ∆Qj is
smaller than a certain threshold.

2

3

4

1 1

2

3

4

5

2

3

4

1 1

2

3

4

5

Fig. A4.2 - Loop
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Annex 4.3: Linear programming

Darcy-Wessbach’s equation can be written as

jn jn
jn

Q Q
H

R
∆ =

with

jn j nH H H∆ = −  and 
2 5

8
g D

R
L

π
λ

=

If an estimation is made for a value for Q*
jn the Darcy

Weissbach formula will be linearalised in

*
jn

jn jn

Q
H Q

R
∆ =

or

jn jn jnQ H K= ∆  with *jn
jn

R
K

Q
=

This linearised Darcy Weissbach equation can be
solved with matrix techniques. To elaborate this we
consider the node n surrounded with m pipes and a
demand Qn.
The first law of Kirchhoff states:

( )
1

0
m

jn n
j

Q Q
=

− =∑  with

Qjn : Volume flow from node j to considered node n
Qn : Demand (or supply) in considered node n
m : number of pipes connected to node n

Substituting the linearised Darcy Weissbach in the
first law of Kirchhoff gives

( )
1

0
m

jn jn n
j

H K Q
=

∆ − =∑ i

with jn j nH H H∆ = − this derives to (see text box)

( )
1 1

m m

j jn n jn n
j j

H K H K Q
= =

− =∑ ∑i

For each node this equation can be written up in the
general form:

1 21 1
1

11

12 2 2 21
1

31

1 2
1

. .

. .

. ..
. . . .

..
. . . .

. .

m

j n
j

m

j n
j

m

n n jn
j

K K K

QH
K K K QH

QH
K K K

=

=

=

−

∆
− ∆

=

∆
−

∑

∑

∑

The lines in the matrix are only filled at m points,
being the characteristics of the connecting pipes to
the adjacent nodes. If a node is a connection point
of 5 pipes, the line is filled at 5 points and the diago-
nal.
The matrix is symmetric in the diagonal because Kjn

equals Kjn:

*
jn

jn
jn

R
K

Q
=  and 

2 5

8jn jn
jn

g D
R R

L
π

λ
= =

Consider a node n with four pipes. The value of
m is 4.
The first Kirchhoff law becomes

1 2 3 4 0n n n n nQ Q Q Q Q+ + + − =

Linerarisation gives

1 1 2 2

3 3 4 4

n n n n

n n n n n

H K H K
H K H K Q

∆ + ∆ +
∆ + ∆ =

i i
i i

With jn j nH H H∆ = −  this becomes

( ) ( )
( ) ( )

1 1 2 2

3 3 4 4

n n n n

n n n n n

H H K H H K

H H K H H K Q

− + − +

− + − =

i i
i i

Ordering to H1, H2, H3 and H4 gives:

( )
1 1 2 2 3 3 4 4

1 2 3 4

n n n n

n n n n n n

H K H K H K H K

H K K K K Q

+ + + −

+ + + =

i i i i

or

( )
4 4

1 1
j jn n jn n

j j

H K H K Q
= =

− =∑ ∑i
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Because Rejn = Renj and thus ljn =  lnj gives

* *
jn njQ Q=

This all leads to Kjn = Kjn

The symmetry of the matrix is convenient because
of the simplicity of solving methods. Also the matrix
can be used to check the hydraulic validity of the
network. If a line in the matrix is only filled at the
diagonal, than the corresponding node is not con-
nected to the system.
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Annex 4.4

The Nash-model

The Nash model or Nash-cascade, (see Nash &
Sutchiffe (1970)) is a cascade of n identical linear
reservoirs (Figure), the momentary value for q(t) is
calculated using the following convolution between
net-rain intensity and a transfer function h(t):

0

( ) ( ) ( )
t

nq t h t p dτ τ τ= −∫

The transfer function h(t) is defined as:

11
( )

( )

n t
kt

h t e
k n k

− − =  Γ  

In which:
k reservoir constant
n number of reservoirs
t time
p(t) net-rain intensity as function of time
q(t) run-off discharge as function of time
G(n) the gamma function of n (if n is a integer then

G(n)=n!)

This model contains two parameters, due to the defi-
nition it is possible to define a cascade with a non-
integer number of reservoirs.

Non-linear reservoir model (NLR-model)

The non-linear reservoir model is defined by:

( ) ( )b
nq t Kp t=

In which
q(t) Run-off
K Reservoir constant
pn( t) Netto-rain
b Power

If the parameter b is equal to unity then this model is
equal to a Nash-model with n=1. The non-linear
model is often applied with a value for b of 2/3. This
is based on the application of the stationary, uniform
equation of water motion in one dimension. This pa-
rameter value however, is only of theoretical impor-
tance and does most of the time not apply to practi-
cal cases.
The values for the constants in the family of reser-
voir models have been subject to a wide spectrum
of researches. As an example, a model known as
the Desbordes model is briefly discussed. This model
has been proposed by Desbordes and is linear due
to that fact that b=1. The value of K however is de-
fined as:

( ) 1.90.18 0.36

0.21 0.070.15
3

1Desb r nt

pe

K K A P C

T L H

−−

−

= +

In which:
KDesb proportionality constant depending

on the type of surface (-)
Ar sub-catchment area (ha)
Pnt sub-catchment slope (%)
C the proportion of sub-catchment

area that is impermeable
(between 0 and 1) (-)

T3 the duration of the rainfall sub event (s)
L sub-catchment length (m)
Hpe total accumulated effective rainfall

for the rainfall sub-event (m)

The value for K depends on characteristics of the
area under consideration but also on the character-
istics of the storm event in terms of duration and
accumulated rain.
Apart from these generally applied models, the
Volterra model and the Laguerre model are also
known, these model a detailed description of these
models is found in van der Kloet & van de Ven (1981).

 

Fig. A4.3 - The Nash cascade
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These models however, pose the problem for practi-
cal applications that a large number of model pa-
rameters are to be estimated (in some cases up to
10). As will be seen in the chapter on calibration, an
increase in the number of the model parameters has
a negative effect on the process of calibration as
well as on the reliability of the calibrated model pa-
rameters. Therefore the Volterra en Laguerre model
are not discussed in this thesis.
An intensive research done by van de Ven (van de
Ven, 1989)) has shown that the differences between
run-off models are only marginal in practice. In table
A4.1some of his results obtained from field meas-
urement are shown.
The power b in the non-linear reservoir model is close
to unity, implying a linear model can be used. In the
Netherlands a standard model (NWRW 4.3 (1989))
has been chosen for practical implementation. This
model is in its essence built up from:
- A surface depression storage and initial losses

model.
- An infiltration model according to Horton.
- A single linear reservoir model.
- A simple evaporation model using an average

evaporation value varying per month (the so
called Penmann evaporation).

Nash 'n' Nash 'k' NLR b NLR k

Municipal area 0.65 415 1.02 5.6

Parking lot 1.05 225 1.07 4.0

Table A4.1 -Some parameter values for the Nash model
and the non-linear model (NLR) b in mm, k for the NLR in
mm1-b min-1
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