OE4625 Dredge Pumps and Slurry Transport

Vaclav Matousek October 13, 2004

″UDelft

1

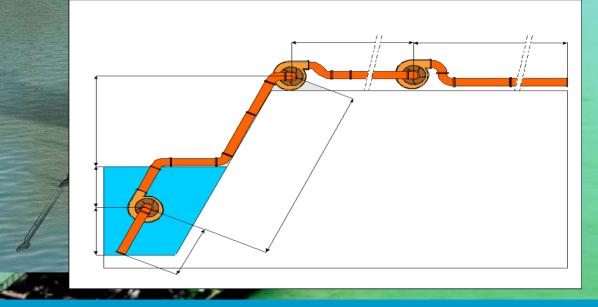
Dredge Pumps and Slurry Transport

OE4625 Dredge Pumps and Slurry Transport

2

Dredge Pumps and Slurry Transport

OE4625 Dredge Pumps and Slurry Transport



HAM 24

October 13, 2004

3

Dredge Pumps and Slurry Transport

Keywords:

Transport (*Horizontal, Vertical, Inclined*) Pipe (*Length, Diameter*) Pump (*Type, Size*)

Goals: Design a pipe of appropriate dire Design pumps of appropriate size Determine a number of required pumps

October 13, 2004

Dredge Pumps and Slurry Transport

Objectives:

Prediction of energy dissipation in PIPE Prediction of energy production in PUMP

Prediction models:

Pressure drop vs. mean velocity in PIPE

Pressure gain vs. mean velocity in PUMP

October 13, 2004

5

Delft University of Technology

Part I. Principles of Mixture Flow in Pipelines

1. Basic Principles of Flow in a Pipe

2. Soil-Water Mixture and Its Phases

3. Flow of Mixture in a Pipeline

4. Modeling of Stratified Mixture Flows

tified Mixture R

ters 2004 flow Conditions in Drecking Pipelines

Dredge Pumps and Slurry Transport

Part II. Operational Principles of Pump-Pipeline Systems Transporting Mixtures

7. Pump and Pipeline Characteristics

AM 318

8. Operation Limits of a Pump-Pipeline Sy

9. Readuction of Solids in a Pump-Pipeline System

th Pupples in Series

Dredge Pumps and Slurry Transport

October 13

1. BASIC PRINCIPLES OF FLOW IN PIPE

CONSERVATION OF MASS

CONSERVATION OF MOMENTUM

CONSERVATION OF ENERGY

October 13, 2004

TUDelft

8

Conservation of Mass

Continuity equation for a control volume (CV):

$$\frac{d(mass)}{dt} = \sum (q_{outlet} - q_{inlet}) \quad [kg/s]$$

q [kg/s] ... Total mass flow rate through all boundaries of the CV

October 13, 2004

9

Conservation of Mass

Continuity equation in general form:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \left(\rho \vec{V}\right) = 0$$

For incompressible (ρ = const.) liquid and steady flow (∂ / ∂ t = 0) the equation is given in its simplest form

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$

October 13, 2004

10

Conservation of Mass

The physical explanation of the equation is that the mass flow rates $q_m = \rho VA [kg/s]$ for steady flow at the inlets and outlets of the control volume are equal.

Expressed in terms of the mean values of quantities at the inlet and outlet of the control volume, given by a pipeline length section, the equation is

$q_{m} = \rho VA = const. [kg/s]$ $(\rho VA)_{inlet} = (\rho VA)_{outlet}$

thus

October 13, 2004

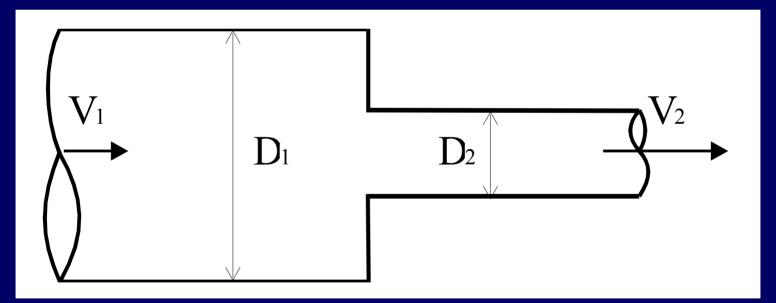
″_UDelft

11

Conservation of Mass in 1D-flow

For a circular pipeline of two different diameters D₁ and D₂

 $V_1 D_1^2 = V_2 D_2^2 [m^3/s]$

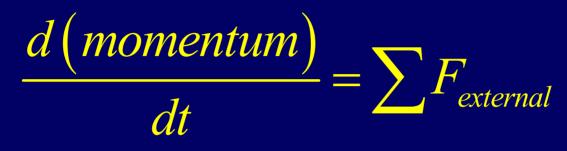


October 13, 2004

12

Conservation of Momentum

Newton's second law of motion:



The *external forces* are

- body forces due to external fields (gravity, magnetism, electric potential) which act upon the entire mass of the matter within the control volume,
- surface forces due to stresses on the surface of the control volume which are transmitted across the control surface.

fUDelft

13

October 13, 2004

Conservation of Momentum

In an *infinitesimal control volume* filled with a substance of density the force balance between inertial force, on one side, and pressure force, body force, friction force, on the other side, is given by a differential linear momentum equation in vector form

 $\rho \frac{DV}{Dt} = \frac{\partial}{\partial t} \left(\rho \vec{V} \right) + \rho \vec{V} \cdot \vec{\nabla} \vec{V} = -\vec{\nabla} P - \rho g \vec{\nabla} h - \vec{\nabla} \cdot \vec{T}$

October 13, 2004

14

Conservation of Momentum

Claude-Louis Navier

George Stokes

Navier-Stokes' Equations (in Vector Form):

Mass Conservation (Continuity):

 $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \left(\rho \vec{V} \right) = 0$

Momentum Conservation:

$$\frac{\partial}{\partial t} (\rho \vec{V}) + \vec{V} \cdot \vec{\nabla} (\rho \vec{V}) = -\vec{\nabla} p + \mu \vec{\nabla}^2 \vec{V} + \rho \vec{a}$$

Transient Advective Pressure Diffusion External Gradient Acceleration

Navier-Stokes' Equations in Cartesian Co-ordinates:

Continuity:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$
x-Momentum:

$$\frac{\partial (\rho u)}{\partial t} + u \frac{\partial (\rho u)}{\partial x} + v \frac{\partial (\rho u)}{\partial y} + w \frac{\partial (\rho u)}{\partial z} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + \rho a_x$$
y-Momentum:

$$\frac{\partial (\rho v)}{\partial t} + u \frac{\partial (\rho v)}{\partial x} + v \frac{\partial (\rho v)}{\partial y} + w \frac{\partial (\rho v)}{\partial z} = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + \rho a_y$$
z-Momentum:

$$\frac{\partial (\rho w)}{\partial t} + u \frac{\partial (\rho w)}{\partial x} + v \frac{\partial (\rho w)}{\partial y} + w \frac{\partial (\rho w)}{\partial z} = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) + \rho a_x$$

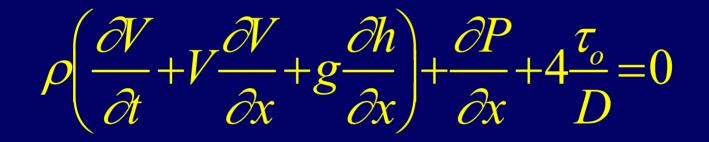
October 13, 2004

15

Delft

Conservation of Momentum in 1D-flow

In *a straight piece of pipe of the differential distance dx* (1D-flow), quantities in the equation are averaged over the pipeline cross section:



October 13, 2004

16

Conservation of Momentum in 1D-flow

For *additional conditions* :

- incompressible liquid,
- steady and uniform flow in a horizontal straight pipe

 $-\frac{dP}{dx}A = \tau_o O , \quad \text{i.e.} \quad -\frac{dP}{dx} = \frac{4\tau_o}{D}$

for *a pipe of a circular cross section* and internal diameter D.

October 13, 2004

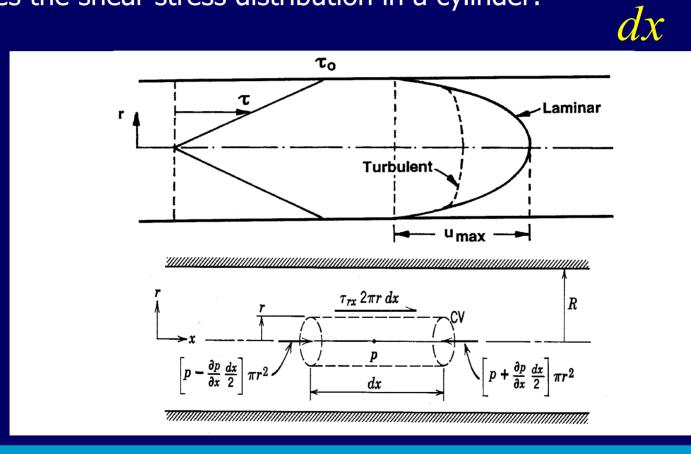
TUDelft

17

Conservation of Momentum in 1D-flow 4τ For a straight horizontal circular pipe \mathbf{P}_1 P_2 October 13, 2004 18

Liquid Friction in 2D Pipe Flow

The force-balance equation generalized for 2D-flow gives the shear stress distribution in a cylinder:



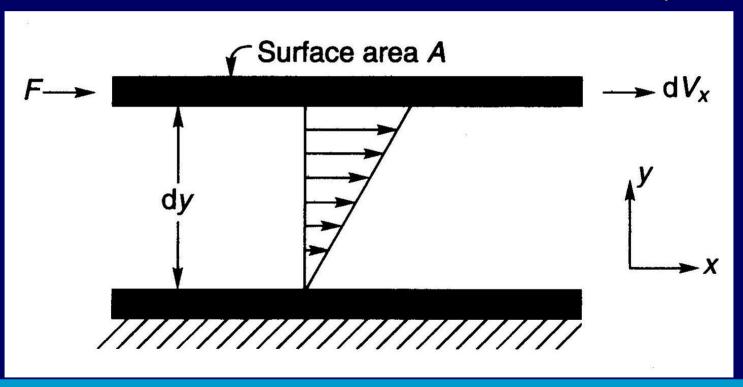
October 13, 2004

19

dP

Liquid Friction in 2D Pipe Flow

Newton's law of liquid viscosity (valid for laminar flow):



 \mathcal{T}

October 13, 2004

20

Liquid Friction in 2D Laminar Flow in Pipe

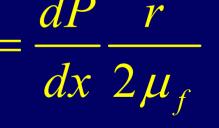
The generalized force-balance equation for the 2D-flow in a cylinder

Newton's law of liquid viscosity (valid for laminar flow)

$$-\frac{dP}{dx} = \tau \frac{2}{r}$$

$$\tau = \mu_f \left(-\frac{dv_x}{dr} \right)$$

Velocity distribution in laminar flow in a pipe



October 13, 2004

TUDelft

21

Liquid Friction in 1D Laminar Flow in Pipe

The integration of the velocity gradient equation gives a value for mean velocity in pipe

and thus a relationship between pressure drop and mean velocity

which is the required pressure-drop model for laminar flow in pipe

 $V_f = \frac{1}{A} \iint v_x dA = \frac{8}{D^2} \int v_x r dr$ $V_f = \frac{D^2}{32\mu_f} \left(\frac{dP}{dx}\right)$

 $\frac{dP}{dx} = \frac{32\mu_f V_f}{D^2}$

22

October 13, 2004

Liquid Friction in 1D Laminar Flow in Pipe

A comparison of the pressure-drop model for laminar flow in pipe

-

with the general force balance (driving force = resistance force) for pipe flow

gives the equation for the shear stress at the pipe wall in laminar flow

 $32\mu_f$ $d\mathbf{x}$ $\tau_o = \mu_f \frac{\delta V_f}{f}$

October 13, 2004

The wall shear stress for *turbulent flow* cannot be determined directly from the force balance and Newton's law of viscosity (it does not hold for turbulent flow). Instead, it is formulated by using <u>dimensional analysis</u>.

A function $\tau_0 = fn(\rho_{f'} V_{f'} \mu_{f'} D_{r'} k)$ is assumed. The analysis provides the following relationship between dimensionless groups τ

$$\frac{\tau_o}{\frac{1}{2}\rho_f V_f^2} = fn\left(\operatorname{Re}, \frac{\kappa}{D}\right)$$

October 13, 2004

24

The dimensionless group Re, *Reynolds number*, is a ratio of the inertial forces and the viscous forces in the pipeline flow

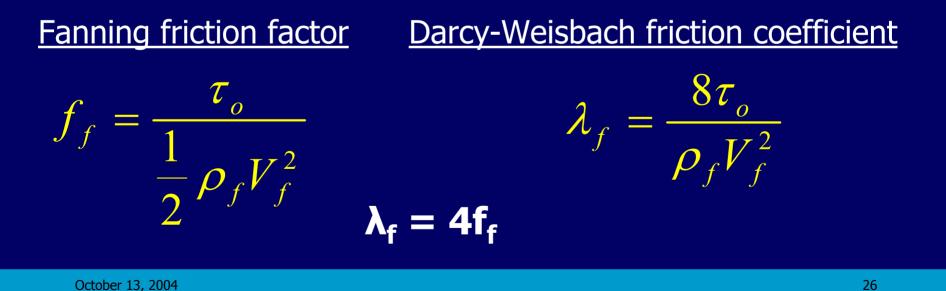
$$\operatorname{Re} = \frac{V_f D \rho_f}{\mu_f} = \frac{inertial.force}{viscous.force}$$

Remark: The Reynolds number determines a threshold between the laminar and the turbulent flows in a pipe.

October 13, 2004

25

The dimensionless parameter on the left side of the dimensional-analysis equation is called the friction factor. It is the ratio between the wall shear stress and kinetic energy of the liquid in a control volume in a pipeline.



26

Liquid Friction in 1D Flow in Pipe

A comparison of the Darcy-Weisbach friction coefficient equation

+

with the linear momentum eq. (driving force = resistance force) for pipe flow

gives the general pressure-drop equation for the pipe flow (Darcy-Weisbach equation, 1850) $\Lambda_f \rho$

October 13, 2004

TUDelf

27

Liquid Friction in 1D Laminar Flow in Pipe

A comparison of the general pressure-drop equation

with the pressure-drop eq. for <u>laminar flow</u> in pipe

gives the pipe-wall friction law for laminar flow in pipe dxdxRe

> ∕∕ **Ľ**UDelft

28

October 13, 2004

In *turbulent flows* there is no simple expression linking the velocity distribution with the shear stress (and so with the pressure gradient) in the pipe cross section.

The dimensional analysis provides the following relationship between dimensionless groups

$$\lambda_f = fn\left(\operatorname{Re}, \frac{k}{D}\right)$$

October 13, 2004

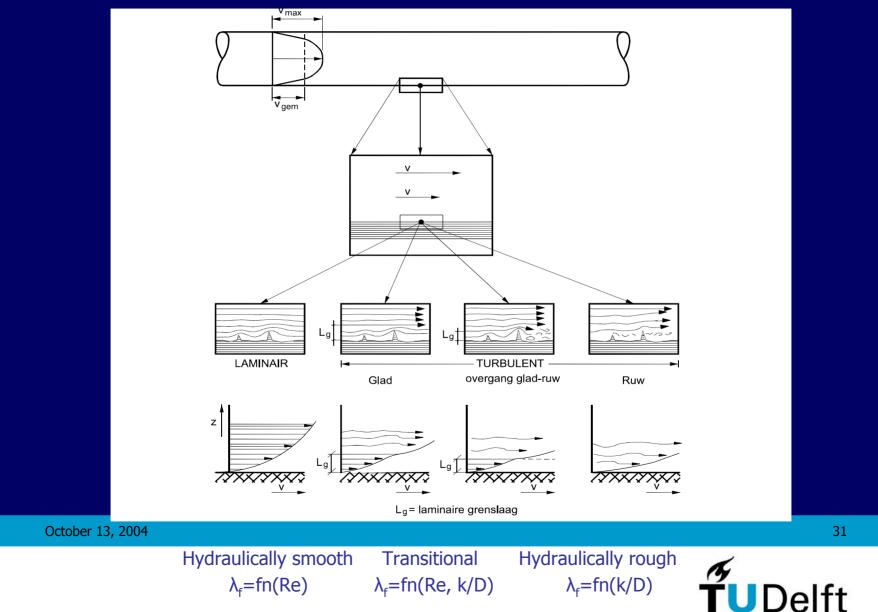
29

There are three different regimes with the different wall friction laws:

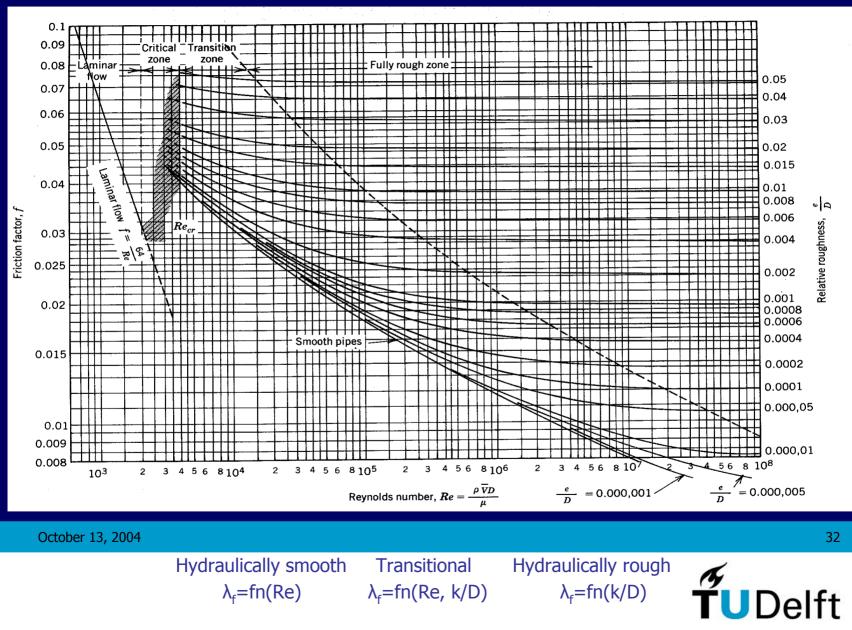
Hydraulically smoothTransitionalHydraulically rough $\lambda_f = fn(Re)$ $\lambda_f = fn(Re, k/D)$ $\lambda_f = fn(k/D)$

October 13, 2004

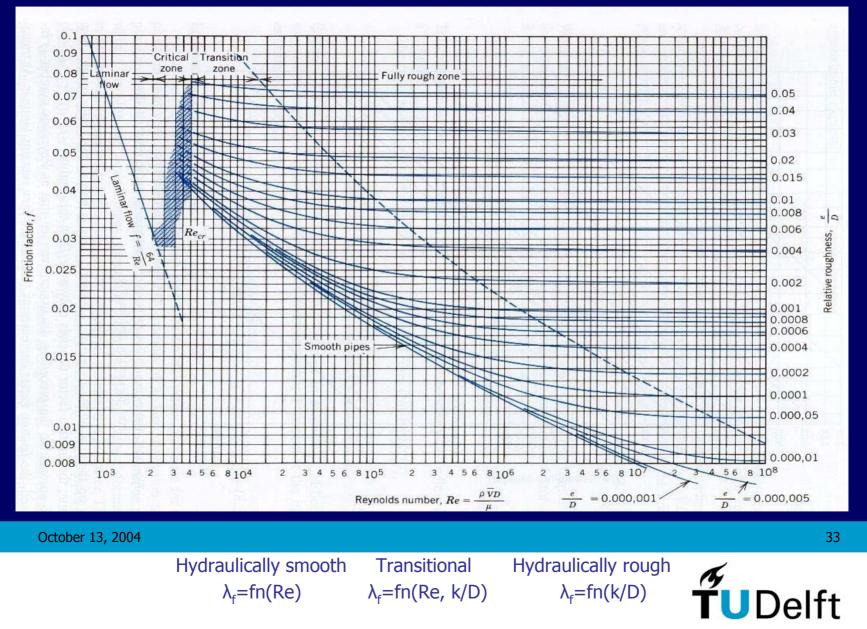
30



Liquid Friction: Moody Diagram



Liquid Friction: Moody Diagram



Conservation of energy

$$\frac{P_{1}}{\rho g} + \frac{V_{1}}{2g} + z_{1} = \frac{P_{2}}{\rho g} + \frac{V_{2}}{2g} + z_{2} + \frac{\lambda L V^{2}}{2g D},$$

where $\boldsymbol{\lambda}$ is the friction factor, for our case :

$$\lambda = \frac{2 g D^3}{v^2 R_e^2}$$

The Colebrook formula for λ is :

$$\begin{split} \sqrt{\lambda} &= \frac{1}{2 \log_{10} \left(\frac{2.51}{R_e \sqrt{\lambda}} \right)}, R_e \geq 4000, \\ & \text{where } R_e \left(\frac{2.51}{R_e \sqrt{\lambda}} \right) \end{split}$$
 where R is Reynolds number
$$R_e &= \frac{VD}{v}$$

October 13, 2004

