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Objectives:

Prediction of energy dissipation in PIPE
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1. Basic Pr1nc1ples of Flow in a Pipe i
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2. Soil-Water Mlxture and Its Phases
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7. Pump and Pipeline Characteﬁ%tws _L

8. Operatlon leltg,,p;‘ B
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CONSERVATION OF MASS

CONSERVATION OF MOMENTUM

CONSERVATION OF ENERGY
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Continuity equation for a control volume (CV):

d (mass

dt

Z (qoutlet qmlet ) [kg/S]

g [kg/s] ... Total mass flow rate through all boundaries
of the CV
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Continuity equation in general form:
op

at+v(pV) 0

For incompressible (p = const.) liquid and steady flow (a/at = 0) the
equation is given in its simplest form

Z ov, OV,
Ox Oy Oz
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The physical explanation of the equation is that the mass flow rates
d., = PVA [kg/s] for steady flow at the inlets and outlets of the
control volume are equal.

Expressed in terms of the mean values of quantities at the inlet and
outlet of the control volume, given by a pipeline length section, the

equation is

dn = PVA

(PVA)iniet
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For a circular pipeline of two different diameters D, and D,

V,D,%2 = V,D,2 [m3/s]
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Newton’s second law of motion:

d ( momentum
( d , ) — ZF;xternal

The external forces are

- body forces due to external fields (gravity, magnetism, electric
potential) which act upon the entire mass of the matter within the
control volume,

- surface forces due to stresses on the surface of the control volume
which are transmitted across the control surface.
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In an /nfinitesimal control volume filled with a substance
of density the force balance between inertial force, on
one side, and pressure force, body force, friction
force, on the other side, is given by a differential
linear momentum equation in vector form

DV 0, = e
2V _ G o)+ pP T =P paVh—V.T
P ﬁt(p J+p pg
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Claude-Louis
Navier

George
Stokes

Navier-Stokes’ Equations (in Vector Form):

Mass Conservation (Continuity):

Momentum Conservation:

(o7 147 (o7 )= ~Fp+ w57 + pa

ot

Lo

Transient

b L

Advective Pressure Diffusion  External
Gradient Acceleration
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avier-Stokes’ Equations in Cartesian Co-ordinates:

Continuity:

9 Blpu)  dlpv)  dlew) _ .
& & & &
x-Momentum:

opw), , Apw), Opu),

ot G o
y-Momentum:

), o), o)

& o oy

z-Momentum:
Apw) , , Blow)
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In a straight piece of pipe of the differential distance dx
(1D-flow), quantities in the equation are averaged
over the pipeline cross section:

724 ﬁV ﬁh oP 7
pl—+V F—+4-2
a  ox ﬁx ox D
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For additional conditions
- incompressible liquid,
- steady and uniform flow in a horizontal straight pipe

dPA:TOO, - dP:4TO
dx dx D

for a pipe of a circular cross section and internal
diameter D.

Dredge Pumps and Slurry Transport 6
TUDelft



PI—P2_4Z'

For a straight horizontal circular pipe 0
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The force-balance equation generalized for 2D-flow dP 2
gives the shear stress distribution in a cylinder: — d_ =T —
X r
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Newton’s law of liquid viscosity F d |4
(valid for laminar flow): t=—=H;
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The generalized force-balance equation for dP 2
the 2D-flow in a cylinder = 7 —

-+

Newton'’s law of liquid viscosity (valid for T =
laminar flow) luf d?‘

Velocity distribution in laminar flow in a pipe dvx dP r

dr  dx 21,
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The integration of the velocity D/2

1 3
gradient equation gives a Vf ZZJ:JVXCM ZE .(‘)- erdr

value for mean velocity in pipe

D* (dP

and thus a relationship between V —
pressure drop and mean velocity J 3 2 lu 7 dx
which is the required pressure-drop dP _ RY/ H f Vf

model for laminar flow in pipe

dx D?
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A comparison of the pressure-drop dP R 2,Ll f Vf

model for laminar flow in pipe — =

+
with the general force balance d P 41
(driving force = resistance force) — = 0
for pipe flow d X D
gives the equation for the shear 8Vf
stress at the pipe wall in laminar T, = ,Llf —
flow D
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The wall shear stress for turbulent flow cannot be
determined directly from the force balance and Newton's
law of viscosity (it does not hold for turbulent flow).
Instead, it is féarmulated by using dimensional analysis.

A function Ty = fn(pg Vs He D, K) is assumed. The analysis
provides the following relationship between dimensionless

groups r

L= fn(Re,ij
] 2 D
E/Ofo
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The dimensionless group Re, Reynolds number, is a ratio
of the inertial forces and the viscous forces in the pipeline
flow

_ ViDp, _ inertial. force

I viscous. force

Re

Remark: The Reynolds number determines a threshold
between the laminar and the turbulent flows in a pipe.
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The dimensionless parameter on the left side of the
dimensional-analysis equation is called the friction factor.

It is the ratio between the wall shear stress and kinetic
energy of the liquid in a control volume in a pipeline.

Fanning friction factor Darcy-Weisbach friction coefficient
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A comparison of the Darcy-Weisbach /1 82—0

friction coefficient equation f ,0 V2
4 1 f
with the linear momentum eq. d P 41
(driving force = resistance force) - = 2
for pipe flow dx D
: 2
gives the general pressure-drop d P ﬂ, 1 p 1 V 7
equation for the pipe flow —
(Darcy-Weisbach equation, 1850) dx D )
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A comparison of the general dP lf P f Vf

pressure-drop equation

+
with the pressure-drop eq. for dP . R 2,Ll f Vf

laminar flow in pipe —

gives the pipe-wall friction law for i — _

laminar flow in pipe / prV G
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In turbulent flows there is no simple expression linking the
velocity distribution with the shear stress (and so with the
pressure gradient) in the pipe cross section.

The dimensional analysis provides the following relationship
between dimensionless groups

k
A, = fn| Re,—
y = Jn| Re,—
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There are three different regimes with the different wall friction
laws:

Hydraulically smooth Transitional Hydraulically rough
A:=fn(Re) A:=fn(Re, k/D) A:=fn(k/D)
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LAMINAIR f TURBULENT

overgang glad-ruw
R ————
v

Lg= laminaire grenslaag

Hydraulically smooth ~ Transitional Hydraulically rough

A=fn(Re) A=fn(Re, k/D) A=m(k/D) TU Delft
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P, V, P, V, ALV ?
+ +Z, = + +Z, +
Pg 29 P9 29 2gD

where Ais the friction factor,for our case :

]

Daniel Bernoulli

2gD3
A: ngg
The Colebrook formula for A is :
NINE L ,R_ >4000,

Sl 2.51
10 Re\/x
where R, is Reynolds number
R - VD
Y
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