oe4625 Dredge Pumps and Slurry Transport

Vaclav Matousek October 13, 2004

″UDelft

1

Dredge Pumps and Slurry Transport

Delft University of Technology

2. SOIL-WATER MIXTURE AND ITS PHASES

SOIL PROPERTIES

LIQUID PROPERTIES

MIXTURE PROPERTIES

October 13, 2004

TUDelft

2

SOIL PROPERTIES

SIZE OF PARTICLE & SOIL DENSITY OF PARTICLE & SOIL

October 13, 2004

TUDelft

3

PARTICLE SIZE

Classification and identification of soil

Particle size distribution (PSD)

Characteristic sizes

October 13, 2004

TUDelft

4

Classification & Identification

Main type of soil		Particle size	
		Identification	size in [mm]
Boulders	Granular Non-cohesive	-	> 200
Cobbles		_	200 - 60
		Coarse	<u>60 – 20</u>
Gravel		Medium	20 - 6
		Fine	<u>6 – 2</u>
		Coarse	2-0.6
Sand		Medium	0.6 - 0.2
		Fine	0.2 - 0.06
		Coarse	0.06 - 0.02
Silt	Cohesive	Medium	0.02 - 0.006
		Fine	0.006 - 0.002
Clay		-	< 0.002

October 13, 2004

TUDelft

5

Particle Size Distribution (PSD)

1	2	3	4	5
sieve opening [mm]	weight fraction [g]	percentage of total weight, ni [%]	cumulative % mass	characteristic particle size, di [mm]
0.85	0	0	100	0.85
0.6	6.7	0.67	99.33	0.6
0.5	37.7	3.77	95.56	0.5
0.42	447.8	44.78	50.78	0.42
0.355	366.4	36.64	14.14	0.355
0.3	74.2	7.42	6.72	0.3
0.21	55.1	5.51	1.21	0.21
0.15	10.6	1.06	0.15	0.15
0.00	1.5	0.15	0	0.00
	1000	100		

October 13, 2004

TUDelft

6

Particle Size Distribution (PSD)

(%)	zand a (µm)	zand b (µm)	zand c (µm)
$ \begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 90 \\ \end{array} $	$250 \\ 180 \\ 150 \\ 140 \\ 120 \\ 90 \\ 75 \\ 60 \\ 40$	$ \begin{array}{r} 1300 \\ 500 \\ 270 \\ 170 \\ 120 \\ 75 \\ 55 \\ 40 \\ 25 \\ \end{array} $	850 620 500 400 350 290 240 180 130
lotaal	1105	2555	3560
dmf	123	284	396

October 13, 2004

TUDelft

7

Characteristic Sizes

If a sample of soil is composed of particles of different sizes, the soil particles are represented by a characteristic size (diameter):

Mass-median diameter : d₅₀ [mm]

The 85%-diameter :

Mean diameter :
$$d_s = \frac{\sum_{i}^{i} d_i p_i}{\sum_{i}^{i} p_i} = \frac{\sum_{i}^{i} d_i p_i}{1.00}$$
 [mm]
Decisive particle d_{nf} = $\frac{d_{10} + d_{20} + \dots + d_{80} + d_{90}}{9}$

TUDe

October 13, 2004

Density of Submerged Soil (granular body)

The density of a granular body is given by the density of solid particles and the density of liquid in the pores.

The porosity of granular body $n = \frac{\text{Volume pores in gran. body}}{\text{Total volume granular body}}$ [-]

The typical value of the sand-bed porosity is 0.4, 40 per cent of the total volume.

The density of granular body $\rho_{si} = \rho_s (1-n) + \rho_f n$ [kg/m³]

The typical value of the soil density is 2000 kg/m³ for a submerged sand bed.

9

October 13, 2004

Density and Porosity of Soil

	Density of solids [kg/m3]	Density of soil in situ (wet) [kg/m3]	Porosity n [%]
silt	2650	1100 - 1400	80 - 90
loose clay	2650	1400 - 1600	60 - 80
packed clay	2650	1800 - 2000	35 - 50
sand with clay	2650	1800 - 2000	40 - 50
sand	2650	1900 - 2000	35 - 45
coarse sand with gravel	2650	2050 - 2200	28-36
clay boulders	2650	2320	20

October 13, 2004

″UDelft

10

LIQUID PROPERTIES

DENSITY OF LIQUID VISCOSITY OF LIQUID

October 13, 2004

TUDelft

11

Density and Viscosity of Liquid

The density and viscosty of liquid vary with temperature. Sensitivity to pressure can be neglected, the liquids are considered incompressible.

TUDelft

Density and Viscosity of Liquid

Temperature T [ºC]	Density, [kg/m ³]	Dynamic viscosity, [Pa.s]	Kinematic viscosity, [m ² /s]	Vapour pressure, [Pa]
0	999.8	1.781 x 10 ⁻³	1.785 x 10 ⁻⁶	0.61 x 10 ³
5	1000.0	1.518 x 10 ⁻³	1.519 x 10 ⁻⁶	0.87 x 10 ³
10	999.7	1.307 x 10 ⁻³	1.306 x 10 ⁻⁶	1.23 x 10 ³
15	999.1	1.139 x 10 ⁻³	1.139 x 10 ⁻⁶	1.70 x 10 ³
20	998.2	1.002 x 10 ⁻³	1.003 x 10 ⁻⁶	2.34 x 10 ³
25	997.0	0.890 x 10 ⁻³	0.893 x 10 ⁻⁶	3.17 x 10 ³
30	995.7	0.798 x 10 ⁻³	0.800 x 10 ⁻⁶	4.24 x 10 ³

October 13, 2004

13

MIXTURE PROPERTIES

DENSITY OF MIXTURE SOLIDS CONCENTRATION IN MIXTURE

October 13, 2004

TUDelft

14

Solids Concentration in Mixture

Mixture is composed of two phases: solids and liquid.

The density of mixture is determined from the density of solid particles and the density of liquid. The proportion of the phases is given by the parameter called CONCENTRATION OF SOLIDS.

The concentration of solids in mixture

<u>Remark</u>: If the mixture is the granular bed, there is a direct relationship between the solids concentration and porosity in the bed:

$$\mathbf{C}_{\mathbf{v},\mathbf{bed}} = \mathbf{1} - \mathbf{n}.$$

Thus if the sand-bed porosity is 0.4, then the bed concentration is 0.6, 60 per cent of the bed volume is occupied by solid particles.

October 13, 2004

Dredge Pumps and Slurry Transport

$$V = \frac{\text{Volume solids in mixture}}{\text{Total volume of mixture}}$$

[-].

Density of Mixture

MASS(mixture) = MASS(liquid) + MASS(solids)

considering MASS = DENSITY (ρ) x VOLUME (U) and $U_m = U_f + U_s$

 $\rho_m U_m = \rho_f U_f + \rho_s U_s = \rho_f (U_m - U_s) + \rho_s U_s$

dividing by U_m and considering $C_v = U_s/U_m$ gives finally $\rho_m = \rho_f (1-C_v) + \rho_s C_v$ [kg/m³].

Rearranging gives the relationship between the mixture density and the concentration of $C_v = \frac{\rho_m - \rho_f}{\rho_s - \rho_f}$ [-].

October 13, 2004

Delivered Concentration

Solids concentration in flowing mixture:

There are two possible Control Volumes:

- 1. CV is the length section of a pipe: $C_{vi} = U_{s,p}/U_{m,p}$ is the <u>spatial</u> <u>concentration of solids</u>;
- 2. CV is the volume moving with the flowing mixture: $C_{vd} = Q_s/Q_m$ is the *delivered concentration of solids*.

October 13, 2004

Delivered Concentration

In pipe:

- **1.** $C_{vi} = U_{s,p}/U_{m,p}$
- **2.** $C_{vd} = Q_s / Q_m^{=}$
 - = $\Delta U_s / \Delta t \cdot \Delta t / \Delta U_m$ = U_s / U_m in the tank

 $C_{vi} > = C_{vd}$

TUDelft

18

October 13, 2004

Delivered Concentration

October 13, 2004

19

Delivered Concentration – PracticalValuesDelivered C ...Density ofDelivered C

	in situ [-]	mixture [kg/m3]	solid grains [-]
CSD without submerged pump	0.25	1250	0.15
CSD with submerged pump	0.30	1300	0.18
Bucket wheel dredge with submerged pump	0.50	1500	0.30
Plain suction dredge	0.40-0.60	1400-1600	0.24 - 0.36
Modern THSD during hopper loading (suction process)	0.30-0.40	1300-1600	0.18 - 0.36
Modern THSD during hopper unloading (pumping to shore)	0.70-0.80	1700-1800	0.42 - 0.48

October 13, 2004

20

Slip Between Solids and Liquid

Phases: mixture = liquid + solids

In pipe: $Q_m = Q_f + Q_s$ i.e. $V_m A = V_f A_f + V_s A_s$

Spatial concentration: $C_{vi} = U_{s,p}/U_{m,p} = A_s L/(A.L) = A_s/A$

Delivered concentration: $C_{vd} = Q_s/Q_m = V_s A_s/(V_m A) = (V_s/V_m) C_{vi}$

The slip ratio (= transport factor): $V_s/V_m = C_{vd}/C_{vi}$

October 13, 2004

TUDelft

21

Slip Ratio – Practical Values

	At low C _{vd}	At high C _{vd}
Silt and finer solids	1.00	1.00
Fine to medium sand	0.80-1.00	0.90-1.00
Medium to coarse sand	0.70-0.90	0.85-1.00
Coarse sand	0.65-0.85	0.75-0.95
Fine gravel	0.65-0.85	0.75-0.90
Boulders	0.40-0.65	0.40-0.65
October 13, 2004		22

TUDelft

Consider that sand particles occupy 27 per cent of the total volume of a dredging pipeline. The rest is occupied by carrying water. The sand-water mixture is discharged from the dredging pipeline at a deposit site. The porosity of the sand in the deposit site n = 0.4.

<u>Determine</u> the density ρ_m of sand-water mixture in the pipeline and the weight concentration C_w of solids in the mixture. Further, determine the in situ density ρ_{si} and the spatial volumetric concentration of in situ sand, C_{vsir} in the deposit site and in the pipeline.

October 13, 2004

23

Inputs:

The spatial volumetric concentration of solids in mixture flow: $C_v = 0.27$

- The density of sand particles:
- The density of carrying water:
- Porosity of sand in a granular body:

 $C_{v} = 0.27$ $\rho_{s} = 2650 \text{ kg/m}^{3}$ $\rho_{f} = 1000 \text{ kg/m}^{3}$ n = 0.4.

24

Solution:

a. Density of mixture (ρ_m) & weight concentration of solids in mixture (C_w)

Eq. 2.9 determines the density of mixture $\rho_{m} = \rho_{f}(1-C_{v}) + \rho_{s}C_{v} = 1000(1-0.27) + 2650x0.27 = 1445.5 \text{ kg/m}^{3}.$

Eq. 2.10 determines the weight concentration $C_w = \frac{\rho_s}{\rho_m} C_v = \frac{2650}{1445.5} 0.27 = 0.495, \text{ i.e. } 49.5 \%.$

October 13, 2004

25

Solution:

b. In-situ density (ρ_{si}) & in-situ volumetric concentration of soil (C_{vsi}) in a granular body (sand bed) $n = \frac{\rho_s - \rho_{si}}{\rho_s}$

According to Eq. 2.3 the porosity $\rho_s - \rho_f$ and thus

 $\rho_{si} = \rho_s - (\rho_f - \rho_s) \cdot n = 2650 - 1650 \times 0.4 = 1990 \text{ kg/m}^3$.

In the sand bed the density of the sand-water mixture is equal to ρ_{si} and thus $C_{vsi} = 1$ (see Eq. 2.11).

October 13, 2004

26

Solution: <u>c. The in-situ volumetric concentration in the pipeline</u>

Eq. 2.12 determines the volumetric concentration of in-situ material in the pipeline as

$$C_{vsi} = \frac{C_v}{1-n} = \frac{0.27}{1-0.4}$$
 = 0.45, i.e. 45 %

October 13, 2004

27