oe4625 Dredge Pumps and Slurry Transport

Vaclav Matousek October 13, 2004

″UDelft

1

Dredge Pumps and Slurry Transport

Delft University of Technology

3. FLOW OF SOIL-WATER MIXTURE

FLOW REGIMES

FLOW PATTERNS

FLOW QUANTITIES/PARAMETERS

October 13, 2004

TUDelft

2

FLOW REGIMES

LAMINAR TURBULENT

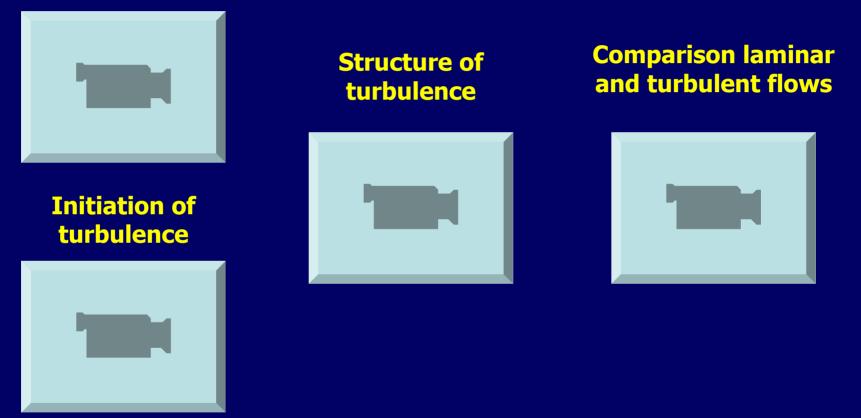
October 13, 2004

TUDelft

3

Regimes: Flow confined by boundaries

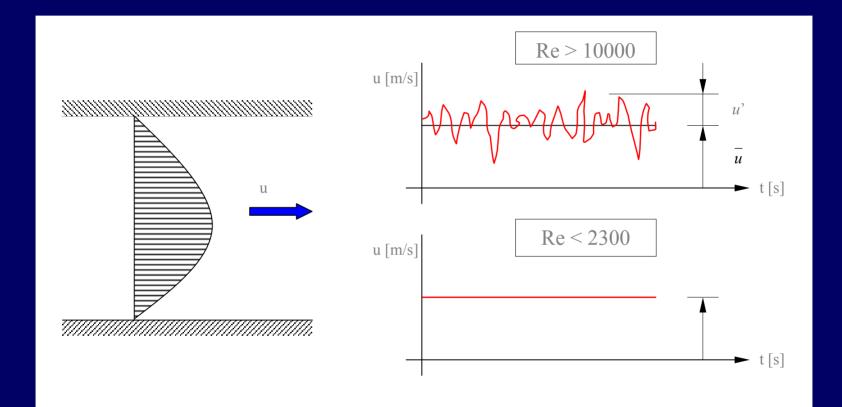
Example of general flow


October 13, 2004

4

Laminar and turbulent flows

Laminar flow



October 13, 2004

″ T∪Delft

5

FLOW REGIMES

October 13, 2004

6

Laminar Flow in Pipe

- composed of thin layers (*lamina*) that move over each other at different velocities forming a typical parabolic velocity profile in a pipeline cross section
- *no* exchange of mass and momentum between neighboring layers
- a stability of a laminar flow is given by *Reynolds number* of the flow and its value 2300 is experimentally determined as a threshold for the maintaining of a laminar flow regime in a conduit.

October 13, 2004

TUDelft

7

Laminar versus Turbulent Flow in Pipe

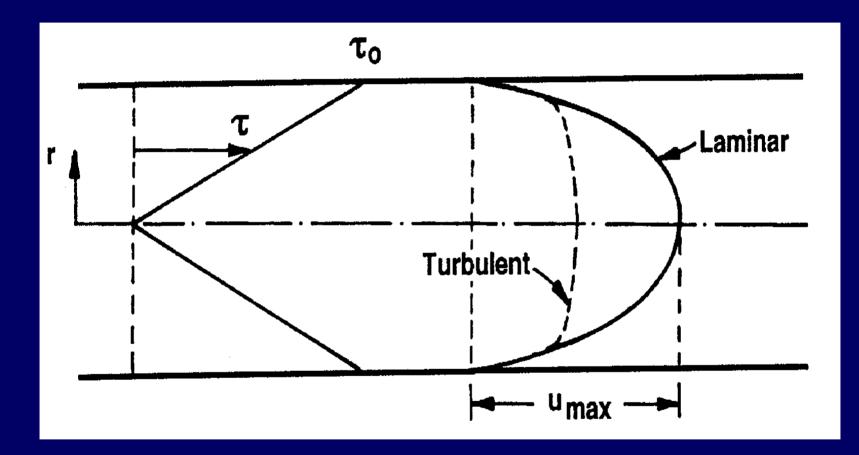
The dimensionless group Re, *Reynolds number*, is a ratio of the inertial forces and the viscous forces in the pipeline flow

$$\operatorname{Re} = \frac{V_f D \rho_f}{\mu_f} = \frac{inertial.force}{viscous.force}$$

Remark: The Reynolds number determines a threshold between the laminar and the turbulent flows in a pipe.The flow is LAMINAR if Re < 2300.

8

October 13, 2004


Turbulent Flow in Pipe

- a result of *disturbances* occurring at the interface between neighboring layers
- *turbulent eddies* are developed as a result of the disturbances; they are responsible for an intensive *random transfer of mass and momentum* in all directions within a liquid stream; this is sensed as a continuous fluctuation of velocity of fluid particles in time and space within a stream
- the flow eddies due to turbulence produce *energy dissipation* additional to that due to friction in a laminar flow. Turbulent flows dissipate more mechanical energy than laminar flows.

October 13, 2004

9

Internal Structure of Pipe Flow

October 13, 2004

Dredge Pumps and Slurry Transport

″UDelft

10

FLOW PATTERNS

FULLY SUSPENDED PARTIALLY STRATIFIED FULLY STRATIFIED

October 13, 2004

TUDelft

11

Fully stratified flows

Example of fully stratified flow

October 13, 2004

12

Flow Patterns: Indicators

- a tendency of a solid particle to settle in a flowing carrying liquid (given by the *particle settling velocity*)
- a tendency of a flowing carrier to suspend solid particles (given by intensity of turbulence, i.e. basically by *mean velocity of a stream* in a pipe).

October 13, 2004

TUDelft

13

Extreme Flow Patterns

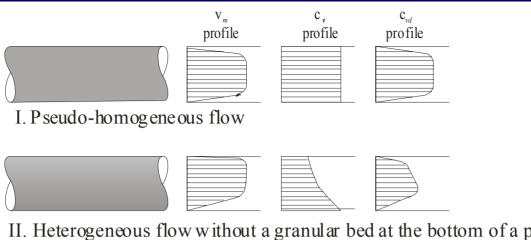
Fully-stratified flow: intensity of turbulence of a carrier flow is not sufficient to suspend any solid particle in a pipeline; all solid particles occupy a granular bed that is either stationary or slides over the bottom of a pipeline

Fully-suspended flow: all solid particles are suspended within a stream of a carrying liquid; no granular bed occurs in a pipeline; if particles distributed uniformly across the pipeline cross section than *pseudo-homogeneous flow*.

October 13, 2004

14

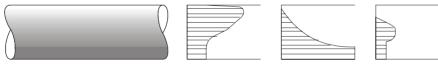
Transitional Flow Pattern


Partially-stratified flow: mixture flow exhibits a considerable concentration gradient across a pipeline cross section indicating an accumulation of a portion of solids near the bottom of a pipeline and a non-uniform distribution of the rest of solids across the rest of a pipeline cross-sectional area; this pattern is also known as a *heterogeneous flow*.

October 13, 2004

15

F



II. Heterogeneous flow without a granular bed at the bottom of a pipe



III. Heterogeneous flow with a low developed bed

IV. Heterogeneous flow with an en bloc sliding bed

V. Stratified flow with a stationary bed

October 13, 2004

16

Drop of velocity from 2.6 m/s to 1.0 m/s in the horizontal 150-mm pipe:

ZH120909a V0 = 2.55 V av = 1.28 to 1.0

ZV120909a V0=2.25 V av = 1.28 to 1.0

October 13, 2004

Medium sand 0.2-0.5 mm

17

Extremely low velocity (0.2-0.3 m/s) in the horizontal 150-mm pipe:

October 13, 2004

Medium sand 0.2-0.5 mm

18

FLOW PARAMETERS

FLOW VELOCITY PRODUCTION OF SOLIDS PRESSURE DROP SPECIFIC ENERGY CONSUMPTION

October 13, 2004

*f*UDelft

19

Flow Parameters

Pipeline-flow parameters should be controlled during a dredging operation in order to *optimize the safety and the economy* of the transportation system. The parameters are:

the **mean velocity of mixture** and its threshold value(s) the **production of solids**

the **frictional pressure loss** the **specific energy consumption**.

20

October 13, 2004

Flow Parameters: Mean Velocity

Mean velocity in a pipeline of a circular pipe of an inner diameter D is written as

 $V = \frac{flow \ rate}{cross \ sectional \ area} = \frac{4Q}{\pi D^2}$

The determination of an appropriate value of the mean mixture velocity is *crucial to safe and low-cost pipeline operation*.

The mean slurry velocity at the limit of stationary deposition is called the **deposition-limit velocity** or the *critical velocity*. This is the threshold velocity at which solid particles occupying a bed at the bottom of a pipeline stop their sliding and start to form a stationary bed at the bottom of a pipeline.

October 13, 2004

21

Flow Parameters: Production of Solids

The **production of solids** (production of solid particles) is an important parameter from the economic point of view. It gives the amount of dry solids delivered at the pipeline outlet over a certain time period.

This is defined as *the (volumetric) flow rate of solids* (flow rate of solid particles) at the outlet of a slurry pipeline

$$Q_s = \frac{\pi}{4} D^2 V_m C_{vd} 3600 \left[\frac{m^3}{hour} \right]$$

During a dredging operation the parameters V_m and C_{vd} are usually measured in a pipeline of known D so that the production of solids given by a solids flow rate can be determined.

October 13, 2004

22

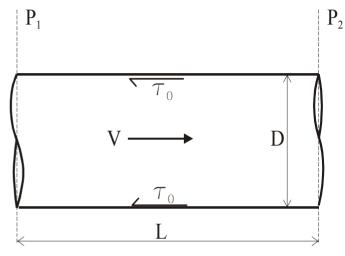
Flow Parameters: Production of Solids

For the *payment of a dredging work*, the **production based** on in-situ volume of transported soil (production of solid particles + porous liquid) is decisive. The delivered concentration of the in-situ soil $C_{vdsi} = \frac{C_{vd}}{1-n}$

so that the production of in-situ soil can be calculated as

$$Q_{si} = \frac{\pi}{4} D^2 V_m C_{vdsi} 3600 = \frac{Q_s}{1 - n} \quad \left[\frac{m^3}{hour}\right]$$

Since the porosity is lower than one (typically n = 0.4 for a loose-poured sand), the production of in-situ soil (Q_{si}) is higher than the production of the solid particles (Q_s).

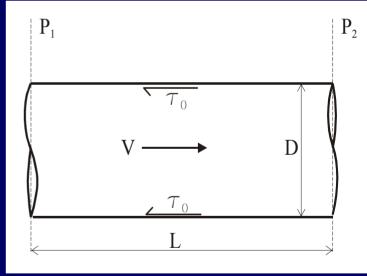


Flow Parameters: Pressure Drop

Flow resistance is given by the *amount of mechanical energy dissipated in a slurry flow* when flowing through a pipeline. The energy dissipation in a steady slurry flow is characterized by the pressure difference along a horizontal pipeline section of constant diameter. The resistance is evaluated as

the **pressure drop** $\Delta P = P_1 - P_2$ (differential pressure over a pipeline section) **[Pa]**, the **pressure gradient** (pressure drop over a pipeline section divided by the length L of a pipeline section) **[Pa/m]** the **hydraulic gradient** due to friction, also $P_1 - P_2$

termed the <u>frictional head loss</u> (I_m) [-]



24

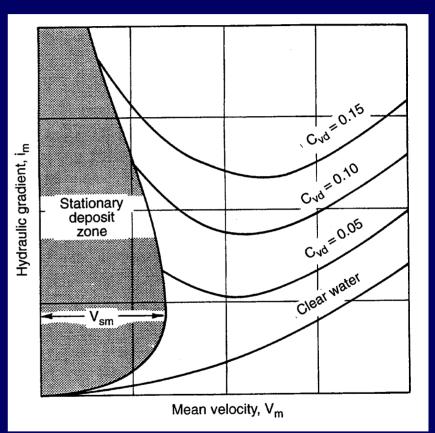
The **hydraulic gradient** due to friction, also termed the $P_1 - P_2$ <u>frictional head loss</u> (I_m) [-], is the head (that is lost owing to friction) divided by the length of a pipeline section, L. $\rho_f gL$

The **head [m]** is a measure of the mechanical energy of a flowing liquid per unit mass. It is expressed as the height of the fluid column exerting the pressure that is equivalent to the pressure differential $P_1 - P_2$.

$$\frac{P_1 - P_2}{\rho_f g}$$

October 13, 2004

TUDelft

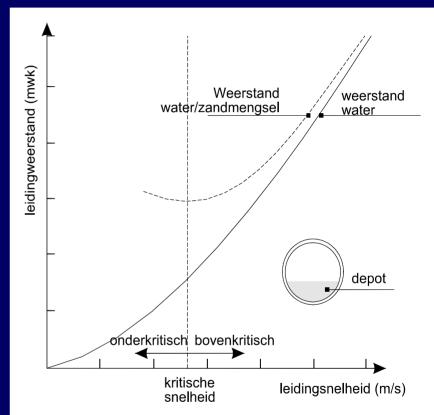

25

The relation between the mechanical dissipation due to mixture flow and the mean mixture velocity in the pipeline section is expressed by a

pipeline-resistance curve

<u>(I – V curve)</u>

giving a relation between the head losses and the mean mixture velocity in a pipe.



The relation between the mechanical dissipation due to mixture flow and the mean mixture velocity in the pipeline section is expressed by a

pipeline-resistance curve

<u>(I – V curve)</u>

giving a relation between the head losses and the mean mixture velocity in a pipe.

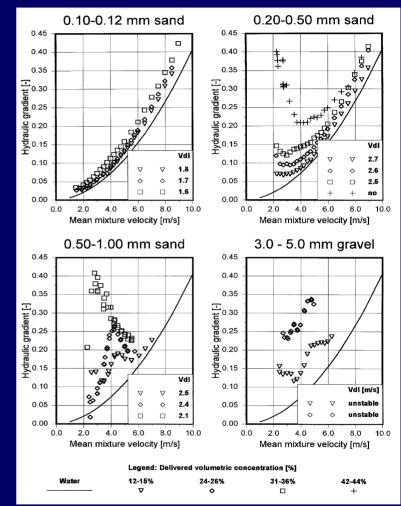
The relation between the mechanical dissipation due to mixture flow and the mean mixture velocity in the pipeline section is expressed by a

pipeline-resistance curve

<u>(I – V curve)</u>

giving a relation between the head losses and the mean mixture velocity in a pipe.

30 Head lost due to friction [m.w.c.] - Rammixtu 25 20 Homochou Wale right A INC NO 15 10 (a 0.18 mm mixture) 5 Developed bed Low bed No bed 0 2 3 Mixture velocity [m/s] 6 4 Minimum velocity 2 for mixture 0.18 mm 0 2 3 0 ► Mixture flow rate [m³/s]



The relation between the mechanical dissipation due to mixture flow and the mean mixture velocity in the pipeline section is expressed by a

pipeline-resistance curve

<u>(I – V curve)</u>

giving a relation between the head losses and the mean mixture velocity in a pipe.

October 13, 2004

29

Flow Parameters: SEC

The *efficiency of a slurry pipeline* is evaluated by means of a parameter called **specific energy consumption (SEC)**.

The SEC is an *appropriate optimization parameter* because it contains both a measure of energy dissipation and a measure of solids load in a pipeline flow.

<u>The SEC determines the energy required to move a given</u> <u>quantity of solids over a given distance in a pipeline</u>.

30

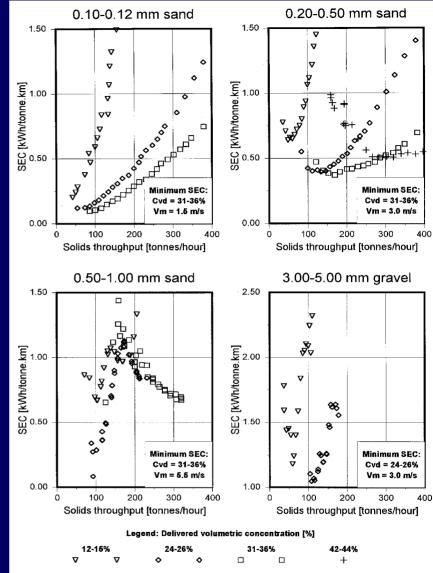
Flow Parameters: SEC

The **specific energy consumption SEC** is defined as a ratio between

- the power consumption per metre of pipe, $I_m \rho_f g Q_m$, and
- the (dry) <u>solids throughput</u> in a pipe, $\rho_f C_{vd} Q_m$.

$$SEC = \frac{I_m \rho_f g Q_m}{\rho_s C_{vd} Q_m} = \frac{I_m g}{S_s C_{vd}} \qquad \left[\frac{J}{kgm}\right]$$

$$SEC = 2.7 \frac{I_m}{S_s C_{vd}} \qquad \left[\frac{kWh}{tonne.km}\right]$$


October 13, 2004

31

Flow Parameters: SEC

The optimization of transport can be done using the SEC – Production diagram (SEC – Q_s curve).

October 13, 2004

32