oe4625 Dredge Pumps and Slurry Transport

Vaclav Matousek October 13, 2004

″UDelft

1

Dredge Pumps and Slurry Transport

Delft University of Technology

4. MODELING OF STRATIFIED MIXTURE FLOWS (Heterogeneous Flows)

EMPIRICAL MODELING

THEORETICAL MODELING

October 13, 2004

TUDelft

2

THEORETICAL MODELING

MACROSCOPIC (Large Control Volume)

MICROSCOPIC (Infinitesimal Control Volume)

October 13, 2004

TUDelft

3

MACROSCOPIC MODEL

A TWO-LAYER MODEL

FLOW COMPOSED OF TWO LAYERS EACH LAYER = CONTROL VOLUME CONSERVATION LAWS FOR EACH LAYER: Conservation of mass Conservation of momentum

October 13, 2004

4

Stratified flows

Example of stratified flow

October 13, 2004

TUDelft

5

A. Simplified Flow Pattern

October 13, 2004

6

A. Real Flow Pattern

7

A. Real Flow Pattern

October 13, 2004

Dredge Pumps and Slurry Transport

TUDelft

8

A. Real Flow Pattern

October 13, 2004

9

October 13, 2004

A. Simplified Flow Pattern - STRATIFICATION.

B. Particle Support Mechanism

- the CONTACT
- the SUSPENSION = NO CONTACT.

October 13, 2004

11

A. Simplified Flow Pattern

- the real/virtual interface at the top of a contact layer
 - the homogeneous distribution of velocity (V) and concentration (C) within each layer

(C1, C2, V1, V2)

- no slip between phases within a layer

Dredge Pumps and Slurry Transport

12

B. Particle Support Mechanism INTERGRANULAR CONTACT & PARTICLE SUSPENSION (contact load) (suspended load)

Contacts:continuous (Coulombic contacts within
a stationary or sliding granular bed)orsporadic
layer)

October 13, 2004

13

B. Particle Support Mechanism

MECHANISMS FOR SOLID PARTICLE SUSPENSION

Diffusive effect of *carrier turbulence* (no interparticle contacts within suspended layer)

Dispersive effect of *repulsion forces* due to interparticle collisions (within shear layer)

October 13, 2004

TUDelft

14

A. Simplified Flow Pattern

Figure: Geometry of schematic cross-section.

October 13, 2004

2LM: Concentration distribution

A. Simplified Flow Pattern

Solids fractions in both layers:

Solids fraction in contact layer:

Solids fraction in suspension layer:

 $C_{vi} = C1.A1 + C2.A2$

 $C_{c}A = C2A2$

 $C_s A = C1.A1$

October 13, 2004

TUDelft

17

2LM: Conservation of mass

A. Continuity equations

Slurry flow rate:

Solids flow rate:

 $A.V_{m} = A1.V1 + A2.V2$

 $A_{s} V_{s} = C_{vi} A V_{s}$ $C_{vi} A V_{s} = C_{vd} A V_{m}$

 C_{vd} .A. V_m = C1.A1.V1 + C2.A2.V2

October 13, 2004

Dredge Pumps and Slurry Transport

18

Flow-Stratification Parameter

The overall relationship

(for both turbulent suspension and shearing action)

$$\frac{C_c}{C_{vi}} = \exp\left(-Coeff \frac{V_m}{v_t}\right)$$

Coeff = const = 0.018 (Gillies et al, 1991) 0.024 (D=150 mm; Matousek, 1997) 0.0212 (Gillies and Shook, 2000)

October 13, 2004

19

Repetition: Conservation of Momentum in 1D-flow

For

- incompressible liquid,
- steady and uniform flow in a horizontal straight pipe

 $-\frac{dP}{dx}A = \tau_o O , \quad \text{i.e.} \quad -\frac{dP}{dx} = \frac{4\tau_o}{D}$

for *a pipe of a circular cross section* and internal diameter D.

October 13, 2004

TUDelft

20

″ UDelft

A. Simplified Flow Pattern

October 13, 2004

TUDelft

22

2LM: Conservation of momentum

A. Force-balance equations (for the unit length L of a pipe)

Upper layer: $dP.A1 = \tau 1.01 + \tau 12.012$ Lower layer: $dP.A2 = -\tau 12.012 + \tau 2.02$

$T_{2.02} = T_{f_{1.02}} + T_{f_{2.02}} + T_{f_{2.02}} = \mu_{s_{1.02}} + F_{N_{1.02}}$

 au_f is the shear stress due to flow at a pipe wall of perimeter O2 (velocity-dependent viscous friction)

 $\tau 2_s$ is the shear stress due to sliding at a pipe wall of the solids occupying a contact layer (velocity-independent mechanical friction).

October 13, 2004

TUDelft

23

Fully Stratified Flow

Prediction of frictional pressure drop (hydraulic gradient)

October 13, 2004

Fully Stratified Flow

October 13, 2004

25

Fully Stratified Flow

The result of prediction of frictional pressure drop (hydraulic gradient)

Dredge Pumps and Slurry Transport

October 13, 2004

Fully & Partially Stratified Flows Prediction of the maximum velocity at the limit of stationary deposition (the demi-McDonald's diagram)

October 13, 2004

27

Max velocity at limit of stationary deposit:

 $V_{sm} = fn(d,D)$

October 13, 2004

ÍUDelft

TUDelft

Partially Stratified Flows Prediction of the deposition-limit velocity the hydraulic gradient the thickness of the bed the velocity of the bed the slip ratio

October 13, 2004

Dredge Pumps and Slurry Transport

30

Partially Stratified Flows

EXAMPLE

October 13, 2004

31

Example: Experiments

Measurements in the 150-mm pipe:

Pressure drop Mean velocity of slurry Mean concentration of solids Concentration distribution.

October 13, 2004

TUDelft

32

Example: Modeling of suspension

The concentration gradient

the Schmidt-Rouse model with the implemented hindered settling effect

$$\varepsilon_s \frac{dc_v}{dy} = v_t \left(1 - c_v\right)^m c_v \quad \varepsilon_s = fn \left(D, u_* = \sqrt{\frac{\lambda}{8}} V_m\right)$$

The hydraulic gradient

the two-layer model with the stratification-ratio equation

October 13, 2004

33

Example: Measured concentr'n profile

Example: Local solids dispersion coeff.

Example: Measured concentr'n profile

Example: Local solids dispersion coeff.

Example: Solids dispersion coefficient

Example: Solids dispersion coefficient

Example: Construction of simplified profile

Inputs:

- Measured concentration profile
- Measured mean concentration C_{vi}.

Outputs:

- The value of the solids dispersion coefficient
- The position of the interface between two layers
- The mean concentration of solids in the bed
- The stratification-ratio value.

October 13, 2004

40

Example: Stratification evaluated

Position of the interface:

• The position at which the concentration profile of turbulent suspension is linked to the granular bed.

Mean concentration in the bed:

• The mean concentration tend to vary slightly with C_{vi} and V_m.

Stratification ratio:

• The portions of solids that contribute to contact or suspended loads.

41

Dredge Pumps and Slurry Transport

October 13, 2004

Hydraulic gradient

Inputs to the two-layer model:

- Parameters of simplified concentration profile
- Measured mean velocity (V_m)
- Friction coefficients (μ_s , λ_{1f} , λ_{2f} , λ_{12}).

Outputs:

- The value of the hydraulic gradient
- The value of the slip ratio.

October 13, 2004

Medium sand: hydraulic gradient

Medium sand: hydraulic gradient

Example: Conclusions

- The concentration gradients in slurry flows of fine to medium sands in a 150-mm pipe are due dispersive action of carrier turbulence.
- The concentration gradients can be predicted using the Schmidt-Rouse turbulent diffusion model with the implemented hindered settling effect. The dispersion coefficient can be considered constant across the suspension flow.

October 13, 2004

49

Example: Conclusions

- The concentration gradient can be used for the determination of the simplified concentration profile in the two-layer flow pattern.
- The hydraulic gradient determined using the two-layer model fits reasonably the measured value.

October 13, 2004

50