oe4625 Dredge Pumps and Slurry Transport

Vaclav Matousek October 13, 2004

″UDelft

1

Dredge Pumps and Slurry Transport

Delft University of Technology

9. PRODUCTION OF SOLIDS IN A PUMP-PIPELINE SYSTEM

PRODUCTION RANGE

PRODUCTION LIMITATION BY PIPE LENGTH

PRODUCTION LIMITATION BY PUMP POSITION

October 13, 2004

TUDelft

2

Flow Parameters: Production of Solids

The **production of solids** is an important parameter from the economic point of view. It gives <u>the amount of dry solids delivered at the pipeline</u> <u>outlet over a certain time period</u>.

This is defined as *the (volumetric) flow rate of solids* at the outlet of a slurry pipeline

$$Q_s = \frac{\pi}{4} D^2 V_m C_{vd} 3600 \quad \left[\frac{m^3}{hour}\right]$$

During a dredging operation the parameters V_m and C_{vd} are usually measured in a pipeline of known D so that the production of solids given by a solids flow rate can be determined.

October 13, 2004

TUDelft

3

Flow Parameters: Production of Solids

The **production of solids** is an important parameter from the economic point of view. It gives <u>the amount of dry solids delivered at the pipeline</u> <u>outlet over a certain time period</u>.

This is defined as *the (volumetric) flow rate of solids* at the outlet of a slurry pipeline

$$Q_s = Q_m C_{vd} = Q_m \frac{\rho_m - \rho_f}{\rho_s - \rho_f} \qquad \left[\frac{m^3}{sec}\right]$$

During a dredging operation the parameters V_m and C_{vd} are usually measured in a pipeline of known D so that the production of solids given by a solids flow rate can be determined.

October 13, 2004

TUDelft

4

OPERATIONAL LIMITS

MAXIMUM ATTAINABLE PRODUCTION

MINIMUM ACCEPTABLE PRODUCTION

October 13, 2004

TUDelft

5

MAXIMUM VELOCITY IN THE SYSTEM

6

EFFECT OF PUMP POSITION ON

OPERATIONAL LIMITS

	18 m		9 m	
Density	Qm	Qs	Q _m	Q,
in kg/m ³	m³/s	m ³ /h	m³/s	m³/h
1000	2,840	0	2,840	0
1050	2,659	479	2,756	496
1100	2,491	897	2,644	952
1150	2,309	1247	2,538	1370
1200	2,105	1515	2,422	1744
1250	1,891	1702	2,320	2088
1300	1,627	1757	2,204	2380
1350	1,273	1604	2,089	2632
1380	0,864	1182	2.000	2725
1400			1,956	2816
1450			1,844	2987
1500			1,693	3047
1550			1,511	2992
1600			1,288	2782
1633			1,000	2279

October 13, 2004

7

MAXIMUM ATTAINABLE PRODUCTION

October 13, 2004 Figure. Production limited by decisive vacuum. Q_m-Q_s diagram.

8

OPERATIONAL LIMITS

October 13, 2004 Decisive vacuum curve & vacuum curves of suction pipe.

9

MAXIMUM ATTAINABLE PRODUCTION

October 13, 2004 Figure. Production limited by decisive vacuum. Q_m-Q_s diagram.

10

MINIMUM ACCEPTABLE PRODUCTION

October 13, 200Production limited by decisive vacuum and deposition-limit velocity.

11

PRODUCTION LIMITATIONS

- I. Too Short Pipeline: the pump tends to operate outside a normal working range, the pump speed must be lowered to avoid cavitation
- II. Pipeline Distance Within a Normal Working Range of a Pump: a pump operates at maximum speed and mixture of maximum attainable density is transported
- III. Too Long Pipeline: the pump tends to operate outside a normal working range, the mixture density must be lowered to maintain velocity above the deposition limit in a pipeline

″ T∪Delft

12

October 13, 2004

PRODUCTION LIMITATIONS

I. Too Short Pipeline

II. Pipeline DistanceWithin a NormalWorking Range of aPump

III. Too Long Pipeline

mengsel debiet (m³/s) 1000 Ŋ 800 Ш 600 volumeconcentratie (%) 20 10 0 600 vaste-stofproductie (m³/pompuur) 400 Ŷ 200 0 600 900 1200 1500 lengte persleiding (m)

October 13, 2004

PRODUCTION LIMITATIONS

I. Too Short Pipeline

II. Pipeline DistanceWithin a NormalWorking Range of aPump

III. Too Long Pipeline

14

Dredge Pumps and Slurry Transport

October 13, 2004