## **Design considerations**

#### For offshore wind farms



Offshore Wind Farm Design

**Michiel Zaaijer** 

2007-2008



**Delft University of Technology** 

DUWIND

## **Overview**

- Introduction
- Overall system and planning
- Considerations per part or phase
- Cost of energy



#### Introduction

2007-2008



**Delft University of Technology** 

## Hardware components of the farm





#### **Procedures**



## **Design as part of development phase**

- Feasibility study, project identification Conceptual design (cost-benefit, showstoppers)
- Permitting, financing, investment decision System layout (costs, EIA, visual impact)
- Contracting Preliminary design (reference, budgeting)
- Go ahead Final design, specifications, planning





Throughout this lecture "Horns Rev" will be used to exemplify the design of a state-of-the-art large scale offshore wind farm



The pictures and illustrations of this wind farm, developed by Elsam and Eltra, are taken from the website www.hornsrev.dk. Copyright: Elsam A/S

2007-2008



## **Overall system and planning**

2007-2008



**Delft University of Technology** 

## **General considerations**

- Company / consortium skills (needed and available)
- Requirements, standards and recommended practices
- Legal framework
- (International) developments and policy
- Safety / risk / lifetime
- Environmental impact
- Technological preferences or constraints
- General targets (e.g. size, indication of location)
- Cost-benefit (see next slide)



## **Cost-benefit considerations**

- Costs
- Tax incentives
- Financing and insurance
- Energy quality and quantity, including availability and controllability
- Predictability (particularly wind forecast)
- Market value
- Other revenues (green certificates, subsidy)



# Know (and show) what you're talking about



## **Definition of terms**



2007-2008



## **Definition of used reference system**



2007-2008



## **Reference report**

"Terminology, reference systems and conventions"

Available on blackboard in folder 'Course Documents'

(Report used in the project "Design methods for offshore wind turbines at exposed sites (OWTES)" under contract with the European commission)



## **Interactions in the design process**





|    |                               | 1998           | 1999                    | 2000                    | 2001                    | 2002                    | 2003                    | 2004                    | 20          |
|----|-------------------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|
| ID | Task Name                     | Qtr2 Qtr3 Qtr4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 Qtr 3 Qtr 4 | Qtr 1 Qtr 2 |
| 1  |                               |                |                         |                         |                         |                         |                         |                         |             |
| 2  | Authorities                   |                |                         |                         |                         |                         |                         |                         | 1           |
| 3  | Contact with authorities      |                |                         |                         |                         |                         |                         |                         |             |
| 4  | Approval in principle         |                | 🔶 15-06-99              |                         |                         |                         |                         |                         |             |
| 5  | Final approval                |                |                         |                         | 29-03-01                |                         |                         |                         |             |
| 6  |                               |                |                         |                         |                         |                         |                         |                         |             |
| 7  | Environment                   |                | -                       |                         |                         |                         |                         |                         | ,           |
| 8  | Investigations and monitoring |                |                         |                         |                         |                         |                         |                         |             |
| 9  | EIA-report                    |                |                         | 12-05-00                |                         |                         |                         |                         |             |
| 10 |                               |                |                         |                         |                         |                         |                         |                         |             |
| 11 | Preproject Phase              |                |                         |                         |                         |                         |                         |                         |             |
| 12 |                               |                |                         |                         |                         |                         |                         |                         |             |
| 13 | Horns Rev                     |                |                         |                         |                         |                         | ,                       |                         |             |
| 14 |                               |                |                         |                         |                         |                         |                         |                         |             |
| 15 | Tender phase                  |                | -                       |                         | -                       |                         |                         |                         |             |
| 16 | Prequalification of tenderers |                |                         |                         |                         |                         |                         |                         |             |
| 17 | Tender specifications         |                |                         |                         |                         |                         |                         |                         |             |
| 18 | Tender phase                  |                |                         |                         |                         |                         |                         |                         |             |
| 19 | Contract phase                |                |                         |                         |                         |                         |                         |                         |             |
| 20 |                               |                |                         |                         |                         |                         |                         |                         |             |
| 21 | Execution                     |                |                         |                         | •                       |                         |                         |                         |             |
| 22 | Planning                      |                |                         |                         |                         |                         |                         |                         |             |
| 23 | Manufacturing                 |                |                         |                         |                         |                         |                         |                         |             |
| 24 | Erection on site              |                |                         |                         |                         |                         |                         |                         |             |
| 25 |                               |                |                         |                         |                         |                         |                         |                         |             |
| 26 | Commissioning                 |                |                         |                         |                         |                         | ,                       |                         |             |
| 27 | Voltage - internal cabling    |                |                         |                         |                         | 01-05-02                |                         |                         |             |
| 28 | Voltage - onshore connection  |                |                         |                         |                         | 01-07-02                |                         |                         |             |
| 29 | Commissioning                 |                |                         |                         |                         |                         |                         |                         |             |

2007-2008



- Total investment: 2 GDKK (270 M€)
- Total energy yield: 600 GWh/year → around 150.000 households
- Fixed price: 0.33 DKK/kWh (0.045 €/kWh) (up till energy production of around 10 years)
- Green certificate trading: 0.10-0.27 DKK/kWh (0.014-0.036 €/kWh)







#### Safety

- Yellow lights at outer turbines
- Two red warning lights on each nacelle
- Orange blade tips







2007-2008



#### **Site selection**

2007-2008



**Delft University of Technology** 

## **Site selection**

Design choices:

Location

•General size and shape

Considerations:

•Resources/potential

•Planning (users/infrastructure)

•Indication of costs and technical feasibility

•Relevant developments

•Regulations



## Site selection (example)



- Studies started in 1993
- 4 preferred areas
- 1997: "Action plan for offshore windfarms in Danish waters"
- 1998: Contract negotiations with electricity suppliers
- 1999: Preliminary go-ahead for 4 sites



## Site selection (example)



Hard sand reef of moraine gravel of early ice ages
Water depth
between 1 and 10 m
But... harsh sea
conditions: "The Devil's Horn"

2007-2008



## Wind farm layout

2007-2008



**Delft University of Technology** 

## Wind farm layout

Design choices:

•Number of turbines and turbine rating

•Outline shape

Spacing

•Relative positions

•Positions w.r.t. geographical marks

•Number of support structure designs

Considerations:

•Wake losses

•Electrical losses and costs Einfrastructure

•(Annual) Energy yield

•Indication of costs and technical feasibility

•Planning (users/infrastructure)









2007-2008







## Indication of energy yield, site optimisation, orientation w.r.t prevailing wind direction





Stable bank, consisting of:

- Sand
- Gravel
- Pebble gravel
- Stones

Variation within farm resulted in single monopile design, with variable length.



### **Rotor-nacelle assembly**

2007-2008



**Delft University of Technology** 

## **Rotor-nacelle assembly**

Design choices: (Generally selection and not design) •Rating, power and thrust •Control concept •Electrical system •Gearbox / direct drive •Rotor size, number of blades and bending •Hoisting systems •Climate conditioning

Considerations:

- •Efficiency / yield
- Controllability
- Loading and dynamics
- •Minimum hub height and tip clearance
- •Reliability / maintainability / serviceability
- •Installation



#### **Rotor-nacelle assembly (example)**





### **Support structure**

2007-2008



**Delft University of Technology** 

## **Support structure**

Design choices:

- •Concept and material
- •Hub height
- •(Element) shape and size
- Access facilities
- •Cable tie-in
- •Transition piece

Considerations:

- •Rotor clearance / air gap
- •Energy yield w.r.t. shear
- •Structural reliability and lifetime
- Seabed scour
- •Manufacture and onshore logistics
- Installation
- •(Turbine) maintenance

## Support structure (example)

- 4 m foundation piles
- Wall thickness 5 cm
- 22 24 m penetration
- Transition piece
  - 4.6 m diameter
  - 6 m grout
- Platform 9 m above sea
- 61 m conical tower
- 70 m hub height
- Total mass 340-390 ton





## Support structure (example)



Environmental conditions: wind, waves AND correlation (scatter diagram)



2007-2008


# Support structure (example)





2007-2008

#### **Scour protection**

2007-2008



**Delft University of Technology** 

## **Scour protection**

Design choices:

- •Apply or not?
- Concept
- •Overall size
- •Specification of elements (rock)

- Considerations:
- •Necessity
- •Support function of soil
- •Filter effect
- •Stability (self and surrounding soil)
- Installation



## **Scour protection (example)**

Gravel mattress (soil filter) 0.5 m, grading 0.03-0.2 m Gravel/stone armour layer 0.8 m, grading 0.35-0.55 m

Specialised installation equipment (existing)



 $\leftarrow$  27 m width  $\rightarrow$ 





2007-2008

#### **Electrical collection**

2007-2008



**Delft University of Technology** 

# **Electrical collection**

Design choices: •Topology •Voltage level •AC or DC •Cable type and size •Transformers, inverters, rectifiers, switches, ... •Cable protection •Connections (above/below surface)

- Considerations:
- Installation
- •Risks (switch/re-route)
- •Hydrodynamic conditions
- •Capacity and losses
- •Necessary conversions
- Controllability



# **Electrical collection (example)**



Triple-core copper cable with lead shielding houses fibre optics for communication

5 double strings, AC 36 kV (Medium Voltage) No submerged connections (connections in turbines)





43

2007-2008

#### **Electrical transmission**

2007-2008



**Delft University of Technology** 

#### **Electrical transmission**

Design choices:

•Route

- •Voltage level
- •AC or DC
- •Cable type, size and number
- •Transformers, inverters, rectifiers, switches, shunt inductors, ...

•Cable protection

Considerations:

- Installation
- Planning
- •Risks (cable ploughing)
- •(Extreme) hydrodynamic conditions
- •Capacity and losses
- Necessary conversions
- Controllability



## **Electrical transmission (example)**



AC, 150 kV (High Voltage) - Triple-core trenched cable



46

2007-2008

#### **Other structures**

2007-2008



**Delft University of Technology** 

#### **Other structures**

Design choices:

•Met-mast

Transformer platform

•O&M base

•Shunt inductor platforms (electrical transmission)

Considerations:

Necessity

•Possible combinations (also with turbine support structures)

•Function

•Structural reliability

•Moment of installation (metmast)



#### **Other structures (example)**



Installed spring 1999 Stand-alone (energy, data tx) 1.7 m monopile, square lattice 15, 30, 45, 62 m met. sensors 58 m extra, separate system 2 wave riders + Doppler radar







# **Other structures (example)**



#### 20 x 28 m substation, housing

- Transformer 36/150 kV
- Electronic systems
- Emergency diesel generator
- Fire extinguisher (sea water)
- Staff facilities
- Helipad
- Crawler crane
- Man over board boat

Existing installation equipment (oversized for turbines)

**T**UDelft

50

2007-2008

#### Installation

2007-2008



Delft University of Technology

# Installation

Design choices: (installation of structures, cables and (scour) protection)

- •Equipment
- •Adaptations
- •Logistics
- •Procedures
- •Workability limits

Considerations:

- •Duration (w.r.t. season)
- Workability
- •Stability of equipment as working platform
- •Component weights, dimensions, connections
- •Equipment availability



2007-2008



**″**UDelft





Pile, scour protection and transition piece installation sequence

2007-2008





2007-2008





Specialised installation equipment (existing)



2007-2008





2007-2008



| Opgavenavn                        | March 2002       | April 2002 | May 2002 | June 2002 | July 2002 | August 2002                            | September 2002 |
|-----------------------------------|------------------|------------|----------|-----------|-----------|----------------------------------------|----------------|
| Stage 1, 10 units                 |                  |            | •        |           |           |                                        |                |
| Foundations, and scour protection |                  |            |          |           |           |                                        |                |
| Turbines                          |                  |            |          | l         |           |                                        |                |
| Cables                            | -                |            | <b>K</b> |           | 4         | <b>F</b>                               |                |
| Stage 2, 14 units                 |                  |            |          |           |           | + (+ + + + + + + + + + + + + + + + + + | + +  + +) =    |
| Foundations, and scour protection |                  | 1          |          |           |           |                                        | + + + + _      |
| Turbines                          |                  |            |          |           |           |                                        |                |
| Cables                            |                  |            | -        |           |           | I I I I I I                            | I I I I -      |
| Stage 3, 14 units                 |                  |            |          |           |           |                                        |                |
| Foundations, and scour protection |                  |            |          |           |           |                                        |                |
| Turbines                          |                  | -2         |          |           |           |                                        |                |
| Cables                            | _                |            |          |           | 2.        |                                        |                |
| Stage 4, 14 units                 |                  | -          |          |           | 2         | 3 4                                    | 5 6            |
| Foundations, and scour protection |                  | - 6        |          |           |           |                                        | -              |
| Turbines                          |                  |            |          |           |           |                                        |                |
| Cables                            | _ т              | 11         | 1        |           |           |                                        |                |
|                                   | Installation and |            |          |           |           |                                        |                |
| Stage 5, 14 units                 |                  |            |          | 25.1      |           |                                        |                |
| Foundations, and scour protection | - cor            | nmissi     | oning i  | n 📃       |           |                                        |                |
| Turbines                          |                  |            |          |           |           |                                        |                |
| Cables                            | -                | round      | of 16    |           |           |                                        |                |
|                                   | μ <u>ξ</u>       | stoups     | 01 10    |           |           |                                        |                |
| Stage 6, 14 units                 | -                | 1.         |          |           |           | 1.1                                    |                |
| Foundations, and scour protection |                  | turbi      | nes      |           |           |                                        |                |
| Turbines                          | -                |            |          | I.        |           |                                        |                |
| Caples                            |                  |            |          |           |           |                                        |                |

2007-2008



#### **Operation**

2007-2008



Delft University of Technology

# **Operation**

Design choices: •Periods for scheduled service •Farm/power plant control •Spot market strategy

- Considerations:
- Service needs
- Controllability
- •Value of energy quantity, power and control quality
- •Persistence of power
- Predictability of wind







#### **Maintenance**

2007-2008



**Delft University of Technology** 

#### Maintenance

Design choices:
Equipment
Logistics
Procedures
Workability limits

- Crew deployment
- Decision support

Considerations:

Component reliability

•Difference and similarity of maintenance needs

Accessibility/workability

•Duration of procedures (w.r.t downtime and weather windows)





Scada – Supervisory control & data acquisition



2007-2008





Access of personnel and small parts

Combination of boat and helicopter access

2007-2008





# In addition 1-3 service checks after failure

2007-2008









Weather climate used to predict general workability

Weather forecast used to plan activities. Here: Wave conditions according to DMI (Danmarks Meteorologiske Institut)

2007-2008



## Dismantling

2007-2008



**Delft University of Technology** 

# **Dismantling**

Design choices: •Equipment •Adaptations •Logistics •Procedures •Workability limits

Considerations:

•Duration (w.r.t. end of license)

•Workability

•Reusable components

•Waste and pollution

•Off-season for equipment (less time critical)



# **Dismantling (example)**

#### Fortunately no example of dismantling for Horns Rev!

2007-2008



#### **Cost of energy**

2007-2008



**Delft University of Technology** 

# **Levelised Production Cost**

(Actualised-nominal values)

(Weighted for amortisation benefit)

$$LPC = \frac{\sum_{t=0}^{T} C_t (1+r)^{-t}}{\sum_{t=0}^{T} E_t (1+r)^{-t}}$$

 $\mathbf{C} = \mathrm{costs}$ 

- $\mathbf{E}$  = energy production
- $\mathbf{r}$  = real interest rate
- t = year in lifecycle
- T = economic lifetime



72

2007-2008

LPC
## **Distribution of costs and yield**



2007-2008



73

# **Typical contributions to LPC (1)**

#### Assumptions

- Start-up of entire farm after construction
- Annual O&M costs are constant
- Annual energy production is constant
- Decommissioning after shut-down of farm

$$LPC = \frac{C_{invest}}{aE_{y}} + \frac{C_{O\&M}}{E_{y}} + \frac{C_{D}(1+r)^{-T'}}{aE_{y}}$$
(a = Annuity factor)



74

# **Typical contributions to LPC (2)**



2007-2008



75

#### **Cost component breakdown**

Investment cost breakdown





#### **Detailed breakdown**

#### Power collection and transmission cost breakdown





Necessary information for design considerations

2007-2008



**Delft University of Technology** 

## **Site selection**

- Wind speed distribution general wind farm scale
- General water depth bathymetry (w.r.t. structure and offshore equipment)
- General environmental conditions (w.r.t loading, accessibility, lightning, ...)
- Location and specification of grid connection points, landfalls, harbours, consumers (end-clients)
- Other users and infrastructure (incl. other wind farms)
- General developments in these issues



# Wind farm layout

- Size (rating) of the wind farm
- Possible preferences/restriction for turbine selection
- Wind speed distribution
- Aerodynamic properties of the turbine (thrust/power)
- Trends of costs and losses of the E-infrastructure
- Variation of water depth, soil conditions and other issues w.r.t. support structure design within the area
- Other users and infrastructure



#### **Rotor-nacelle assembly**

- Available turbines, preferences or pre-selection
- Turbine data
- Configurability (design adaptations or options)
- Precise environmental conditions w.r.t. design requirements (wind, lightning, ...) and yield
- Installation and maintenance options



## **Support structure**

- Rotor diameter, tilt and cone angle, blade bending
- Precise water depth
- Precise environmental conditions (w.r.t loading)
- Precise soil conditions
- Turbine loading characteristics (extremes, fatigue, damping, dynamic behaviour, mass, ...)



#### **Scour protection**

- Effect of omitting scour protection
- Volume of soil active in resistance of loading
- Soil grading
- Water depth
- Dimensions of support structure
- Wave and current conditions



## **Electrical collection**

- Soil conditions
- Wind farm layout
- Quantity and variation of electricity per turbine
- Properties of electrical transmission and turbine electrical system
- Existing technology (power electronics, subsea connectors and installation options)



## **Electrical transmission**

- Soil conditions
- Other users and infrastructure
- Distance and location of public grid and landfalls
- Quantity and variation of electricity supply
- Properties of public grid and farm grid
- Existing technology (power electronics)



#### **Other structures**

- Functional requirements
- Precise environmental conditions
- Precise soil conditions
- Possibility to adapt turbine support structures
- (For met-mast:) Existence and quality of data on environmental conditions (w.r.t. loading and energy)



## Installation

- Dimensions and properties of components that will be installed (masses, cable bending and pull strength, ...)
- Connections and sequence of assembly
- General environmental conditions (w.r.t. workability)
- Equipment options (which types of equipment exist)
- Equipment data: availability, mobilisation times, workability limits/dynamic behaviour
- Facilities and location(s) of harbour(s)



## Operation

- Periodicity and duration of service
- Turbine controllability and park-grid controllability
- Availability and power output
- kWh prices on spot market
- Penalties for not meeting Unit Commitment
- Regulations and compensation for power control
- Wind prediction accuracy (function of prediction time, weather conditions, ...)



## Maintenance

- Failure modes and maintenance requirements: properties of (spare) parts, replacement prescriptions
- Onshore logistics: spare part storage and ordering
- General environmental conditions (w.r.t. workability)
- Equipment options (which types of equipment exist)
- Equipment data: availability, mobilisation times, workability limits/dynamic behaviour
- Facilities and location(s) of harbour(s)



# Dismantling

- Dimensions and properties of components
- Handling requirements for reusable components
- Policy and regulations for waste (e.g. cut-off piles)
- General environmental conditions (w.r.t. workability)
- Equipment options
- Equipment data: availability, mobilisation times, workability limits/dynamic behaviour

