
3
High-Level Synthesis

3.1 Introduction

In this book, the term synthesis is used to denote the process of transforming a
digital system from a behavioral specification into an implementation structure.
Generally speaking, the specification includes some form of abstractions, i.e.,
some of the design decisions are not bound. The implementation, on the other
hand, has to describe in detail the complete design at a given level of
abstraction. Thus, synthesis can be seen as a process of creating implemen­
tation details which are left out of the specification [PenS?). For example, a
purely behavioral specification of a microprocessor may specify only what
should be done in a typical instruction cycle and leaves it to the synthesis
procedure to decide whether a centralized bus should be used, which technique
should be employed to implement the control function, and how much paral­
lelism should be supported.

Due to the complexity of digital systems, especially those implemented in
VLSI technology, the synthesis process is usually divided into several steps.
These steps usually include system-level synthesis, high-level synthesis, logic
synthesis and physical design.

System-level synthesis deals with the formulation of the basic architecture of
the implementation. The input to this synthesis step is a system-level specifi­
cation which describes the behavior of the entire system in terms of a set of
interacting processes. Such a system can be implemented by a set of cooper-

64 Chapter 3: High-Level Synthesis 3.1 Introduction 65

ating processors. such as ASICs. dedicated controllers. FPGAs. and DSP
processors. The allocation of the set of physical processors and the mapping of
processes in the behavioral specification onto these processors are the most
critical design decisions to be made during the system-level synthesis step. An
important feature of the system level is that the synthesis techniques and design
requirements are highly application dependent. For example. system-level
synthesis techniques used in the real-time embedded-controller application area
will be very different from those used in DSP systems. This feature results in
also the different definitions of what design tasks constitute a system-level
synthesis step. In this book, we will address a few fundamental issues related to
system-level synthesis which can be considered as the common denominator
for a system-level synthesis technique. These issues are system partitioning,
hardware/software co-design. and interconnection-structure design. The output
of the system-level synthesis step is a set of processes with well-defined inter­
faces. Each of the processes is specified by a behavioral specification.

High-level synthesis will then translate the behavioral specification of a
process into a structural description that is still technology independent. This
structural description is usually given in terms of a net list at the register­
transfer level.

System-level synthesis and high-level synthesis form the front-end of a
synthesis approach to digital system design. and are together called system
synthesis. This chapter will present the main issues related to high-level
synthesis. while the next chapter will address the system-level synthesis
problems. The issue of controller synthesis which is related to both high-level
synthesis and system-level synthesis will be presented at the end of this
chapter.

After system-level synthesis and high-level synthesis have been performed.
logic synthesis and physical design are used to map the structural implemen­
tation at register-transfer level into a layout description which is the final
implementation. Logic synthesis and physical design form the back-end of the
synthesis approach to digital system design.

One important reason for the separation of the synthesis process into front­
end (system) synthesis and back-end synthesis can be attributed to the good
general property possessed by front-end synthesis and the short-lived nature of
the target semiconductor process associated with the back-end synthesis. As
front-end synthesis is not bound to a particular technology, it can be used in
several different design environments or adopted quickly to new technologies
as needed. The back-end. however. has a very short life cycle. because technol­
ogies change.

In recent years, there has been a clear trend toward automating the system­
synthesis process and there are several reasons for this:

Shorter design cycle. The use of automation in the synthesis process reduces
the design time. and provides better chances for a company to hit the market

window for the products. Automation reduces also the cost of the products
significantly since in many cases the design cost dominates the product
development cost.

• The ability to explore a much larger design space. An efficient synthesis
technique can produce severa) designs from the same specification in a short
period of time. This allows the designer to explore different trade-offs
between cost. performance. power consumption. testability. etc.
Support for design verification. One prerequisite for automating the
hardware/software co-design process, for example. is to start the synthesis
process with a joint specification of both the hardware and software. This
makes it possible to verify the complete design consisting of both hardware
components and software procedures.
Fewer errors. The reduction of manual design activities means that the
number of human errors will be decreased. If the synthesis algorithms can be
validated. we can also be more confident that the final design will correctly
implement the given specification.
Increased availability of IC technology. As more design knowledge is
captured in the synthesis algorithms. it is much easier for people who are not
IC-technology experts to design chips.

3.1.1 The High-Level Synthesis Tasks

The input to the high-level synthesis process is given in an algorithmic-level
specification. such as behavioral VHDL. This type of specification gives the
required mapping from sequences of inputs to sequences of outputs. The speci­
fication should constrain the internal structure of the system to be designed as
little as possible. From the input specification, a synthesis system produces a
description of a data path, that is, a network of registers. functional units,
multiplexers. and buses. A control part should also be produced if it is not
integrated into the data path. In a synchronous design. the control part can be
given as microcode. PLA profiles or random logic.

The basic components of the data path will eventually be implemented by
some physical modules available in a given technology. The technological
parameters, such as silicon area, operation delay and power consumption of the
physical modules are usually stored in a module library and made available to
the high-level synthesis algorithms. In this way. the same high-level synthesis
algorithm can be used to synthesize design based on different technologies by
using different module libraries.

The basic tasks to perform in high-level synthesis are behavioral analysis.
design-style selection, operation scheduling, 'data-path allocation, control
allocation. module binding, and optimization.

66 Chapter 3: High-Level Synthesis 3.1 Introduction 67

To carry out a synthesis task means to make design choices. There is usually a
set of alternative structures that can be used to realize a given behavior. For
example, an addition operation in a given behavioral specification can be
implemented either by a dedicated adder or share an ALU with several other
operations.

The function of a synthesis algorithm is to analyze all or a subset of these
alternatives and to choose the best structure which meets given design
constraints, such as limitations on cycle time, area, or power, while minimizing
a cost function. The difficulty of synthesis is that trade-offs of different design
aspects are highly dependent on each other. Thus, when making design
decisions for a synthesis task, other tasks have to be taken into account in order
to optimize some design criterion, for example. the implemetation cost. Conse­
quently, each of the synthesis tasks cannot be carried out independently without
reducing the possibility of global optimization of the design.

Another difficult factor of synthesis is the immense gap between the input
specifications and the implementation results. Many design decisions are not
bound in the specification and are left for the synthesis algorithms to decide.
For example the synthesizer has to consider whether to multiplex a set of opera­
tions onto a single ALU or to implement several dedicated operators and the
consequences of such a decision in terms of device timing, power consumption,
chip size, pin-out count, and other 10w-leveJ parameters.

The final source of difficulty of automated system synthesis is the paral­
Jelism inherent in a digital system. To organize the avaiJable hardware
resources to efficiently and reliably perform the desired operation, the synthesis
algorithms have to automatically generate parallel structures as well as their
synchronization/communication schemes. They are also responsible for the
scheduling of operations so as to ensure sufficient parallelism in the implemen­
tation.

It is obvious that system synthesis is a very complex problem. Many of the
synthesis tasks have also been proved to be NP-complete [Gaj075, DeMi93].
Therefore, it is often necessary to divide a design into severaJ modules and
apply synthesis algorithms to one module at a time. To further reduce the
complexity, a synthesis approach either partitions the synthesis task into
several sub-tasks and perform one sub-task at a time, or partition the task into a
sequence of transformation steps each of which makes a small change to the
intermediate result of the earlier steps. The later approach is called the transfor­
mational approach to synthesis. The basic idea of the transformational
approach can be illustrated with Figure 3.1, where the traditional approach to
hIgh-level synthesis divides the main synthesis task into three sub-tasks:
allocation, scheduling, and binding. The transformational approach first moves
the design to a structural implementation in one single step by a relatively naive

Figure 3.1: Comparison between the traditional and the transformational
approaches to high.level synthesis.

Transformational ApproachTraditional
Approach

Behavioral
Specification

Structural
Implementation

mapping. The implementation produced by this step is then transformed using
the iterative application of semantic-preserving transformations. These trans­
formations do not change the level of abstraction, rather they explore the imple­
mentation space, looking for good solutions.

The use of the transformational approach has two main advantages. The first
one IS that it facilitates the correctness-by-construction method. Since the
synthesis process is divided into a sequence of small transformations, if the
transformations can be proved to be semantics-preserving, the synthesis will
produce a design which correctly implements the specification [Pen88l.

The second advantage of the transformational approach is that it makes it
more efficient to employ optimization heuristics in the synthesis process. A
tra~sformational approach can be viewed as a neighborhood-search optimi­
zatIOn method. The synthesis process starts with an initial implementation
which is generated by a naive mapping and similar 10 an initial solution of an
optimization problem. The synthesis process then makes small changes to
transform the current solution to a neighborhood solution, which is the same as
the neighborhood moves. The objective of the transformations is to reach the
optimal design, which is the same as finding the optimal solution in the solution
space. Therefore, we can employ existing neighborhood search techniques in
the transformatIOnal approach. Techniques such as simuJated annealing, tabu
search, and genetic algorithms have been reported to perform wen in different
synthesis processes [EPKD97, HaPe96].

An important component of the transformational approach is the design
representation which is used to capture the intermediate results of the synthesis
process. The representation model must be able to represent the design with
dIfferent degrees of completion. That is, it should be able to describe a very
abstract design with a lot of unspecified information, for example. a purely

Basic Synthesis Techniques3.1.2

68 Chapter 3: High-Level Synthesis 3.2 Scheduling 69

Figure 3.2: A behavioral specification and its data flow graph.

multipliers can fit within the available chip area. it is necessary to impose a
resource constraint to limit the number of multipliers to two. The other sched­
uling problems are time-constrained or time- and resource-constrained, which
will be discussed later in this section.

Example 3.1: Figure 3.2 gives a simple behavioral specification and its
corresponding data flow graph (DFG). The DFG is generated by an
algorithm which analyzes the data dependency relation of the different
operations. The data dependency analysis is performed based on the
following principle: Let 0 be the set of all operations in the DFG. If the
result of operation 0,. E 0 is used by operation OJ E 0, then operation OJ

must finish its execution before operation OJ can begin, and we say that
there is a data dependency between these two operations. This data
dependency is represented during the synthesis process as a precedence
constraint (partial ordering) between the operations, which must be
satisfied by the schedule. Figure 3.2b illustrates the data flow graph
which is generated from the VHDL code shown in Figure 3.2a. We have
assumed that all data flows downwards and have therefore drawn the
directed edges only as edges without arrows to indicate directions.

o
The simplest scheduling technique is a greedy heuristics based on the "as

soon as possible" (ASAP) principle. To schedule the DFG given in Figure 3.2b,
using the ASAP algorithm, the operations are first sorted topologically
according to their partial ordering; that is, if there is a partial order from OJ to
OJ' OJ will be sorted before oj" The algorithm then schedules operations one by
one in the topologically sorted order by placing them in the earliest possible
control step [MPC90j.

For the DFG example given in Figure 3.2b, the topologically sorted order is
illustrated in Figure 3.3a by the number used to label the operations. Let us
assume that the available functional units include one adder and one multiplier.
Both the addition and substraction operations are mapped into the adder, and

(b) DFG

r*
~2

(a) Behaviroal specification

a :- i1 + i2;

01 : - (a - i3) .. 3;

02 :- i4 + is + i6;
d :- i7 .. i8;
g :- d + i9 + ilO;
03 :- ill" 7 .. 9;

Operation scheduling, or in short scheduling, deals with the assignment of each
operation to a time slot corresponding to a clock cycle or time interval.
Typically, the input to this task consists of a control and data flow graph
(CDFG), a set of available hardware resources and a performance constraint. A
schedule will be generated such that the datalcontrol dependency defined by the
CDFG will not be violated and the performance constraint is satisfied.

Since scheduling determines which operations can be assigned to the same
time slot, it affects the degree of concurrency of the resulting design and thus
its performance. Further. the maximum number of concurrent operations of a
given type in a schedule is a lower bound on the number of required hardware
resources for that operation. Therefore, the choice of a schedule affects the cost
of the implementation and consequently scheduling plays an important role in
high-level synthesis.

The scheduling problem can be formulated in several ways depending on the
basic assumptions made. One straightforward way is to assume that the behav­
ioral descriptions do not contain conditional or loop constructs, that each
operation takes exactly one control step to execute, and that each type of
operation can be performed by one and only one type of functional unit
[GDWL92j. In this case, we have the following problem:

Given: a set 0 of operations with a partial ordering which determines the
precedence relations, a set K of functional unit types, a type function, "to O~K,

to map the operations into the functional unit types. and resource constraints Ink

for each functional unit type.
Find: a (optimal) schedule for the set of operations that obeys the partial

ordering and utilizes only the available functional units.
The above stated problem is called resource-constrained scheduling, since a

set of constraints regarding the number of functional units (hardware resources)
_L ••• - _<> lj,.itlv oive:n. For example, in a design where only two

3.2 Scheduling

behavioral specification. At the same time, it should also be able to describe a
very detailed implementation with physical parameters which is, for example,
produced by the synthesis process. Thus, it is not necessary or always possIble
to have just one design representation model; a lot of synthesis systems actually
use several different representation models during different stages of the
synthesis process. .

In most design environments, however, it is very useful to have a umfied
design representation which can be used to represent the design at different
levels of abstraction. The main application of a design representation is to
explicitly capture the intermediate result of a design so as to allow the design
algorithm to make appropriate design decisions. This is very important in the
transformational approach to synthesis.

70 Chapter 3: High-Level Synthesis 3.2 Scheduling
71

+

5

4

3

2

Control
StfP I +

multiplier available. Operation 9 will therefore be scheduled in the last but one
control step. When operation 8, an addition, is considered, even though there is
an adder available in the last control step, it cannot be scheduled there, since
there is a data dependence between operation 8 and 10. Operation 8 must be
completed before operation 10 can start. Since operation 10 has been scheduled
in the last control step. The latest possible control step to perform operation 8
is the last but one control step. The algorithm will then exam operation 7,
which has no data dependence with any operation already scheduled. Operation
7 can therefore be scheduled in the latest possible control step where the
needed hardware resource to perform it is available, which is the last control

step.
Example 3.3: Figure 3.4b illustrates the results of applying the ALAP
algorithm to the DFG graph of Example 3.1, which is also depicted in
Figure 3.4a. The ALAP algorithm generates a schedule which consists of
six control steps, which is one step less than the schedule generated by
the ASAP algorithm. Since the two designs need to have the same
amount of functional units, the ALAP algorithm generates a better

schedule in this particular case. o
Usually, we would like the generated schedule to be an optimal one, i.e., it

takes the minimal number of control steps to execute the specified behavior.
The general scheduling problem is however NP-complete [GaJ075], and
heuristics that do not guarantee optimal results are widely used to generate
satisfactory solutions. In the following sections, a few of the most widely used
algorithms will be described. For a complete treatment of scheduling

techniques, please refer to [DeMi931.

Figure 3.4: An ALAP scheduling example.

6 7 +

(a) Sorted DFG (b) ALAP schedule

(b) ASAP schedule

2

5

7

6

Control
Step

I + 3 *

Figure 3.3: An ASAP scheduling example.

(a) Sorted DFG

the multiplication operations are mapped into the multiplier. When operation I
(the operalton labeled with I) is considered for scheduling, it is scheduled in
control step I, since the addition operation is mapped to the adder and there is
an adder 3vaJiable. When operation 2 is considered. however, since the adder is
already oc~upied, it cannot be scheduled in control step I. Operation 2 will be
scheduled In control step 2 instead. The algorithm will then examine operation
3. SIn."e the mUlltph~atlOn operation is mapped to the multiplier and the multi­
pher IS avaIlable, It IS scheduled in control step I. This process will continue
until each operation is assigned to a control step.

Example 3.2: Figure 3.3b illustrates the result of applying the ASAP
scheduling algorithm to the DFG graph of Example 3.1, which is shown
In FIgure 3.3a. In this case, seven control steps are needed to execute the
gl:en behavioral specification, provided that one adder and one multi­
pher are used.

Asimilar approach to the simple scheduling problem is to use the "as lat~ as
possible" (A LAP) principle. With an ALAP algorithm, all the operations are
also first sorted topologIcally according to their data/control dependencies, as
In the case ofASAP. However, the operations will be scheduled backwards by
placing them In the latest possible control step. To schedule the DFG graph of
Example 3.1, operatIOn 10 IS considered first. Since there is a multiplier
avaIlable, operation lOIs scheduled in the last control step, which is illustrated
In.Flg,ure 3.4. The next operation to be considered is operation 9, another multi­
phcatlOn. It cannot be scheduled in the last control step, since there is no morc

73
72 Chapter 3: High-Level Synthesis 3.2 Scheduling

The ASAP and ALAP algorithms are examples of constructive techniques for
SOlvlOg the scheduhng problem. In such techniques. a schedule is constructed
step by step until all operations are scheduled.

Another constructive approach is list scheduling, which proceeds from
control step to control step. In each control step, the operations that are
available to be scheduled are kept in a list, ordered by some priority function
Each o?er~tl.on on the list is then scheduled if the resources needed are free:
otherwise .t IS deferred to the next control step. '

An .lffi.portant ~ecisi~n fo~ a list-scheduling approach is therefore to select
the pnon~y fu~ctlon. ~m~e tl has a strong impact on the final results. Some
systems give higher Priority to operations with low mobility; here mobility of a
operatIOn .IS defined as the. num~er of control steps from the earliest up to the
latest feasIble control step 10 which the operation can be scheduled. Others give
higher ~nonty t~ operations with more immediate successors, arguing that
scheduhng them 10 the current control step would make the largest number of
operat~ons ready, thereby allowing the earliest possible consideration of each
operation. Unforlu~ately. there is no agreement on which priority function is
best, and the selectIon of such a function usually depends on the application.

Let us conSIder the DFG of Example 3.1, which is illustrated in Figure 3.5a.
Assume that the priority function is defined as the length of the path from the
opera.tlOn t~ t~e end of the block; an operation associated with a high number
has high priority. In the first step of the list scheduling algorithm, operation I,
2, 3, 4: and 5 are ready to be scheduled since none of them depend on any other
operation to be completed. These ready operations are ordered by the priority

Force-Directed Scheduling3.2.2

The scheduling problems discussed so far are called resource-constrained
scheduling (RCS). A RCS algorithm tries to find a schedule with the smallest
number of control steps under some resource constraints. The resource
constraints are typically given in the form of the number of functional units of
each type, as in the case of the previously discussed examples. In the more
general form, the resource constraints can be given in terms of a complex cost
function such as the estimated area of the silicon implementation of the whole

function as follows:
Priority(o/) a 2;
Priority(03) = 2;

PrioritY(04) - 2;
PrioritY(02) - I;
Priority(oS) - I.

These operation will be scheduled one by one in the above order. Assume
again that there are only one adder and one multiplier available. Operation I
(0/) and 3 will be scheduled in the first control step. The algorithm will then
proceed to the second control step. Now we have operation 2, 4, S, and 6 ready
to be scheduled, since operation 2, 4, and 5 do not have any predecessors and
the only predecessor of operation 6 has been scheduled in the previous step.
Based on the priority function, we have the following order:

PrioritY(04) - 2;
PrioritY(02) - I;
Priority(os) = I;

PrioritY(06) = I;
Therefore operation 4 and 5 will be scheduled in control step 2 and the

algorithm proceed to control step 3. Operation 2. 6, and 8 are now ready to be
scheduled and they will be ordered in the following way:

Priority(02) = I;

PrioritY(06) - I;
Priority(OB) - I.

Since all the three ready operations are of type addition and there is only one
adder available. only one of them can be scheduled. The three operations have
also the same priority value; this provides room for a secondary priority
function to be used to select one of them to be scheduled. We assume however
that only one priority scheme is used. Therefore, the selection is based on the
topological order and operation 2 is scheduled. This process continues until all
operations are scheduled. The final schedule for this example is illustrated in
Figure 3.5b. This gives a schedule with six control steps, which is the optimal

solution for this example.

3 *

2

(b) List schedule

4

3

5

6

Control
Slep I

I +

*

Figure 3.5: A list-scheduling example.

(a) DFG

2~3+ +

7
+

9

3.2.1 List Scheduling

74 Chapter 3: High-Level Synthesis 3.2 Scheduling 75

design.

There is another type of scheduling problems which are called time­
constrained scheduling (TCS). A TCS algorithm tries to minimize the resources
required to meet a specified global time constraint. The time constraint is
typically given in terms of the number of control steps allowed for the
executIOn of the specified behavior. The TCS problems occur very often in
dIgital sIgnal processing applications in which the system throughput is fixed
and the sIlicon area must be minimized.

The force-directed scheduling algorithm [PaKn89] is one of the most widely
used techniques for the TCS problem. The basic strategy is to place similar
operat~ons in ~ifferenl control steps so as to balance the concurrency of the
operat~ons .assigned to the functional units without increasing the total
execution ~Ime. By balancing the concurrency of operations, it is ensured that
each funcllonal unit has a high utilization and therefore the total number of
units required is decreased.

The. forced-directed scheduling algorithm consists of three main steps:
determine the time frame of each operation, create a distribution graph, and
calculate the force associated with each assignment.
. The first step of the force-directed scheduling algorithm is to determine the

tIme frame of each operation. A good approximation of the time frame can be
determined by constructing the ASAP and ALAP schedules without any
resource constraints and then combining the result of both schedules.

Example 3.4: Let us consider the example given in Figure 3.2 again.
Assume that t~e time constraint indicates that four control steps are
allowed for thIS example. Figure 3.6 illustrates the ASAP and ALAP
schedule of the DFG given in Figure 3.2b, assuming no resource
constraints. From the two schedules. it is easy to identify the time frame

._---------------- -_ .. _--._--._-----------_.

2

3

4

9

._-----------------

9

(a) ASAP schedule (b) ALAP schedule

for each operation. For example. operation 1 can be either scheduled in
control step (c-step) I or 2 and therefore its time frame spans from c-step
I 10 c-step 2. Operation 2, on the other hand, has a time frame from c­
step I to c-step 3. The question that remains to be answered is in which
c-step of the time frame the operation should be scheduled in order to
reduce the number of functional units needed. It can be observed that if
the ASAP schedule is directly used, 3 adders and two multipliers are
needed, which is definitely not optimal for this example.

D

The time frames for all the operations can be collected in a graph, such as
the one given in Figure 3.7 for Example 3.1. The width of the box in Figure 3.7
containing an operation in a c-slep represents the probability that the operation
will be eventually placed in that c-step (time slot). It is assumed that the proba­
bility distribution for each operation is uniform. The width of an operation box
therefore equals I divided by the number of c-steps of its time frame.

The next step of the force-directed scheduling algorithm is to add the proba­
bilities of each type of operations for each c-step and build a distribution graph
for it. The distribution graph shows, for each c-step, how heavily loaded that
step is, provided that all possible schedules are equally likely. If an operation
could be done in any of the k steps in a time frame, I/k is added to each of the
c-steps in the graph. Using the information captured in Figure 3.7, we can
calculate the value of the distribution graph, or DG, for the multiplication
operations. The results are DGmult(l) - 1/2 + 1/3 = 0.833, DG mult(2) - 1/2 + 1/
3 = 0.833, DGmult(3) = 1/2 + 1/2 + 1/3 - 1.333, and DGmult(4) := 1/2 + 1/2 - I,
as illustrated in Figure 3.8. The results for the addition/subtraction operation
DG are DGa/,(l) = 1/2 + 1/3 + 1/2 - 1.333, DGa/,(2) - 1/2 + 1/2 + 1/3 + 1/3 +
1/2 + 1/2 - 2.667, DGa/,(3) - 1/2 + 1/3 + 1/3 + 1/2 - 1.667, and DGa/,(4) - 1/3
- 0.333 ..

The third step of the force-directed scheduling algorithm is to calculate the
force associated with every feasible c-step assignment of each operation. For an
operation with a time frame that spans from c-steps f to t, the force associated

C-Slep .
1/2 1/3 1/2 1/2 1/2 1/3- - - - - - - - - - ------- -
+ * + *- - - - - - - - - - - - -

2 3 + 4
- - - - - - -

3 6 *
2

8 *
5

- - - - - - - - -
4 9

7 10
- - - - - - - - - - - - - - - - - -

r:a'l,;,. A c;: 4 P "'nli A I A P c:rhl".rllllp.!O of Examole 3.1. Figure 3.7: Time frames for Example 3.1.

76 Chapter 3: High-Level Synthesis 3.2 Scheduling /I

c~slep Multiplication OG Addition/subtraction DO

2

3

4

Figure 3.8: Distribution graphs for Example 3.].

with its assignment to c-step j (j$ j $ t) is
,

Force(j) - VG(j)- I [(t~~~\)]
i-I

In other words, the force associated with the tentative assignment of an
operation to c-step j is equal to the difference between the distribution value in
that c-slep and the average of the distribution values for the c-steps bounded by
the operation's time frame.

For example. with the assignment of operation IOta c-step 3, we have

Foree(3) - VGmull(3) - average DGmu11 value over time frame of operation 10

- 1.333 - (1.333 + 1)/2 - 0.167.

On the other hand, the assignment of operation 10 to c-slep 4 yields

Foree(4) - DGmult(4) - average DGmult value over time frame of operation 10

= 1-(1.333+ 1)/2--0.167.

As the DG shows, if operation 10 is assigned to c-step 3, the distribution is
not very well balanced, while the assignment of operation 10 to c-step 4 will
generate a better result. This is reflected by the negative value of the force
associated with the latter assignment.

We must also calculate the force for all predecessors and successors of the
current operation whenever their time frames are affected. These additional
forces are called indirect forces. The total force is the sum of the direct and
indirect forces [PaKn89].

In Example 3.1, operation 10 has four predecessors, operations 3, 4, 5, and 8.
The assignment of operation 10 to c-step 4 will not affect the time frame of any
of its predecessors. Therefore the total force of assigning operation 10 to c-step
4 equals the direct force calculated above, namely -0.167. The assignment of
operation 10 to c-step 3, on the other hand, will affect the time frames of opera-

tions 3, 4, 5, and 8. For example, operation 8 will now only be able to be
performed in c-step 2 instead of both c-steps 2 and 3. Therefore, the assignment
of operation 10 to c-step 3 implies that operation 8 will be assigned to c-step 2
and the indirect force of the latter assignment must be calculated and added to
the total force of the former assignment. The indirect force of assigning
operation 8 to c-step 2 equals DGals(2) - average DGais value over the time
frame of operation 8 (c-steps 2 and 3), i.e., 2.667 - (2.667 + 1.667)/2, which is
0.5. The same calculation should be performed for operations 3, 4, and 5. All
the indirect forces will then be added to the direct force to yield the total force
of assigmning operation 10 to c-step 3.

Once all the forces are calculated, the operation-control step pair with the
largest negative force (or least positive force) is scheduled. The distribution
graphs and forces are then updated and the above process is repeated until all
operations are scheduled.

Since the force-directed scheduling algorithm schedules one operation in
each iteration, it is also constructive. Different from other constructive
approaches, however, force-directed scheduling makes global analysis of the
operations and control steps when selecting the next operation to be scheduled.
Therefore force-directed scheduling is more expensive computationally than,
for example, list scheduling. Force-directed scheduling has complexity O(eN2),
while list scheduling O(eN 10gN), where e is the number of control steps and N
the number of operations [MPC90].

3.2.3 Transformation-Based Scheduling

The scheduling techniques discussed up till now are all of constructive type.
Another basic class of scheduling algorithms is based on transformations. A
transformation-based algorithm begins with an initial schedule, usually either
maximally serial or maximally parallel, and applies transformations to it to
obtain other schedules. The basic transfor.mations are converting serial opera­
tions, or blocks of operations, into parallel ones and the inverse, converting
parallel operations into series ones. Transformation-based algorithms differ in
how they choose what transformations to apply and in which order these are
applied.

One extreme technique is to use exhaustive search. That is, all possible
combinations of serial and parallel conversions are tried and the best design
will be chosen. This method has the advantage that it looks through all possible
designs and guarantee the optimal solution. However, it is computationally very
expensive and not practical for large designs. Exhaustive search can be
improved, to reduce the computation time needed, somewhat by using branch­
and-bound techniques, which cut off the search along any path that can be
recognized to be suboptimal.

Another approach to transformation-based scheduling is to use heuristics to

78 Chapter 3: High-Level Synthesis 3.2 Scheduling 79

(c) A multicycle multiplication

Figure 3.9: Chained and multicycle operations.

guide the process. Transformations are chosen that promise to move the design
closer to the optimal design. Both the CAMAD system [Pen86, PKL89,
PeKu94] and the Yorktown Silicon Compiler [Cam90j use this approach.

One important advantage of the transformation-based approach is that in
each iteration, a complete schedule exists and accurate estimation of the design
in terms of different criteria can be made. It is therefore straightforward to
extend this type of algorithms to handle many advanced issues related to sched­
uling to be discussed in the next section. Further combination of scheduling
and allocation can also be achieved using the transformation-based approach,
as in the case of the CAMAD system, which is discussed in Chapter 6.

3.2.4 Advanced Scheduling Topics

The scheduling problems we have discussed so far are simplified versions of
the rea] problems. We will now discuss several advanced topics which must be
considered by any practical scheduling algorithm.

2""'"

(a) No chaining or multicycling

(b) Two chained additions

Control constructs

Until now we have assumed that a CDFG corresponds to a single basic block,
i.e., one section of straight-line code with only one entry and one exit point.
However, most hardware description languages. such as YHDL. support condi­
tionals, loops and other control structures. The scheduling algorithm must
consider these constructs during the scheduling process.

When scheduling conditional branches, the scheduling algorithm should
make use of the possibility to share functional units between mutually
exclusive branches as much as possible. For example. the same adder can be
used in both the "then" and "else" clauses of an "if' statement [WaCh95].

Chaining and multicycling

We have up till now assumed that all operations requires the same amount of
time to execute, and this time is the control-step length or clock cycle time. In
practice. different operation types may have different execution times and the
above assumption results in the situation that the clock cycle time is dictated by
the most time consuming operation.

Example 3.5: Figure 3.9a illustrates a design where the addition and
multiplication operations are mapped into an adder and a multiplier with
SOns and lOOns delay, respectively [WaCh95]. With the single operation
per cycle assumption, the clock cycle time is determined to be lOOns and
the overall schedule length is 200ns.

o
In order to avoid the above problem, chaining and multicycling techniques

can be used.
Chaining is the task of combining more than one operation in a control step.

Figure 3.9 illustrates the case when chaining is used in Example 3.5, where the
two addition operations are chained and scheduled in the same control step. In
this way, the overall schedule length becomes IDOns. However, an extra adder
is needed in this example since the two addition operations can not longer be
mapped into the same adder because they are performed in the same control

step.
Chaining can be performed before scheduling, and then the combined opera­

tions can be considered as a single entity in the scheduling process. Chaining
can also be performed together with scheduling.

Another alternative to improve the schedule of Example 3.5 is to set the
clock period to SOns, and to execute the multiplication over two control steps,
as illustrated in Figure 3.9c. An operation which is to be executed continuously
over several clock cycles is called a multicycle operation. In Example 3.5,
multicycling decreases the schedule length to lOOns, just like chaining, but
without the cost of another adder. However, multicycling uses twice as many
control steps as chaining, which may result in a larger controller. Further,
multicycling usually needs additional registers to latch the results from one
cycle to the other. For example, the result produced by the first addition
operation must be latched while this is not the case in the chaining solution.

Scheduling with timing constraints

Most scheduling techniques try to find a schedule which has the shortest
schedule length while satisfying a set of constraints or one which requires the

80 Chapter 3: High-Level Synthesis 3.3 Data Path Allocation and Binding 81

least resources and has a shorter schedule length than a given constraint. In
both cases the global performance of the design, in terms of the overall
schedule length, is used as one design criterion. However, few digital systems
work in isolation, so there may also be a need to specify more detailed timing
constraints on certain operations, or sets of operations. For example. we might
want to give a minimum timing constraint, which specifies that one operation
must be executed less than a specified amount of time after another operation,
or a maximum timing constraint, which specifies that one operation must be
executed at least a specified amount of time after another operation.

Most scheduling techniques handle these timing constraints by adding
additional constraint edges to the CDFG, and then treating those additional
edges in much the same way as other constraints. Special techniques based on
heuristics which deal with local timing constraints in a systematic manner have
also been developed [HaPe96].

Discussion

In the general sense, scheduling is to assign operations to control steps so as to
minimize a given objective function while meeting a set of design constraints.
The object function may include the number of control steps, delay, power,
hardware resource, and testability. The general scheduling problem can be
formulated as an Integer Linear Programming (ILP) problem. Using the ILP
formulation, for example, the time-constrained scheduling problem with a
minimal total silicon area can be easily formulated. We need only to let the cost
function be the estimated total area of the final implementation. The concept of
ILP will be further elaborated later in this chapter when data path allocation
and binding are discussed as well as in Chapter 5.

3,3 Data Path Allocation and Binding

In general, data path allocation and binding deal with the problem of which
resources are used to realize in the physical implementation. Such resources
include registers. memory units and different functional units as well as their
communication channels. The basic principle is to share resources as much as
possible provided that the performance and other design criteria can be
satisfied.

Allocation and binding carry out selection and assignment of hardware
resources for a given design. Allocation determines the type and number of
hardware resources for a given design. Binding assigns the instance of an
allocated hardware resource to a given data path node. Different data path
operations can share the same hardware resource if they are not executed at the
same time. For example, an adder can be shared by two additions if they are not

executed during the same clock cycle. A register can also be used to store the
values of two variables if the life times of these variables do not overlap.

As pointed out earlier, the term allocation is sometimes used to denote both
the allocation and binding tasks.

Example 3.6: An allocation for the example depicted in Figure 3.2
selects two adders and one multiplier. A possible schedule for this
allocation is depicted in Figure 3.10. Note that the scheduling assumes,
in this case. that at most two adders and one multiplier in every clock
cycle can be used, as determined by the allocation. The binding step
assigns every operation of the scheduled graph to a physical hardware
component. A possible binding for this example is also depicted in
Figure 3.10. Addition/substraction nodes I, 2, 6 and 7 are assigned to
adder #1, addition nodes 4 and 8 are assigned to adder #2, and multipli­
cation nodes 3, 5, 9 and 10 are assigned to the multiplier.

o
The selection of the type and number of hardware resources during the

allocation step is usually formulated as an optimization problem. The main goal
is to find the minimum number of resources while fulfilling given area/perfor­
mance constraints.

The basic assumption made by many high-level synthesis systems regarding
binding is that each data path node has at least one module in a module library
which implements the function of the data path node. For example, a node
which performs an addition operation may correspond to an adder or an ALU in
the module library. The different modules can have different areas and/or
latencies. This gives the possibility to make trade-offs between different imple­
mentations.

The binding problem is also an optimization problem and can be formulated
using existing optimization methods. For example. an Integer Linear
Programming method or a graph clustering technique can be used to solve it. It
can also be solved using heuristic methods.

Adder #1

Figure 3.10: Binding for Example 3.6 with 2 adders and I multiplier.

82 Chapter 3: High-Level Synthesis 3.3 Data Path Allocation and Binding 83

o

binding! 2 - 0
bindingn = 0
binding42 - I
binding62 - 0
bindingn - 0
binding82 - I

binding JJ - 1
binding2! - I
binding4! = 0
binding6! - I
binding7! - I
binding8! - 0

The above binding solution is depicted in Figure 3.10.

The ILP-based definition of the binding problem can be extended in several
ways to include more complex and realistic requirements. It can also be defined
to include both scheduling and binding.

There are 16 different solutions which satisfy these constraints. One
possible solution is:

L bindingil . schedule i! S 1 Jar k= 1. 2, 3.4;
i E {l, 2,4,6,7. 8}

L bindingn · schedule;!:S 1 . for k= 1,2.3,4.
ie {1.,2. 4,6,7, 8}

bindingi! + bindingi2 - I. for i= 1.2,4.6. 7, 8;

bindingij E {O. I}. i = 1,2..... ops; j = 1. 2..... r. (3.7)

The constraint (3.5) denotes that an operation can only be assigned to one
resource while the constraint (3.6) requires that at most one operation can be
executed on a hardware recourse during an execution step.

The above stated constraints can usually be satisfied by several solutions.
Since we are looking for a solution which minimizes a given design criterion, a
cost function should be defined to guide the selection of the best solution.

Example 3.7: Let us consider the problem of finding a binding for the
example given in Figure 3.2 with the schedule presented in Figure 3.10.
For this example. the binding of the two adders has to fulfill the
following constraints:

(3.1)
(3.2)
(3.3)
(3.4)

CTx
AX-B
X~O

X integer

3.3.1 Integer Linear Programming

Integer linear programming (ILP) is a subclass of the linear programming
problems where the decision variables are of integer values. If we assume that
decision variables are represented by a vector X the ILP problem can be
formally stated as:

Maximize (or Minimize)
Subject to

In this formulation, the maximization/minimization criterion is defined as
(3.1) and the constraints for the optimization problem are defined as equations
(3.2) and inequalities (3.3). In addition all decision variables are constrained to
be integers (3.4). If binary decision variables are used instead of integer ones.
the problem is called 011 linear programming problem. Once our problem is
defined as an ILP problem known methods for solving it can be directly
applied.

As an example. we will define the problem of finding a binding. for a given
schedule. as a 011 linear programming problem. We will concentrate on the
formulation of binding constraints. The minimization criterion will not be
included in this discussion. The reader can imagine different types of cost
functions which can be used to minimize different aspects of the design. for
example, interconnection cost or power consumption. For the purpose of this
presentation we also make the simplifying assumption that every operation is
executed in exactly one clock cycle, i.e., no chaining or multicycle operations
are possible.

We define the following decision variables and constants:
binding;j where i = 1. 2..... ops and denotes operation number, and j = 1.
2 r and denotes component number; the decision variable binding;j is I
iff operation i is bound to hardware resourcej.
scheduleik where i = 1.2..... ops and denotes operation number. and k = 1.
2..... max_step and denotes the number of the steps in a given schedule.
Since we assume that the schedule is already decided, the constant sched­
ule;k is I iff operation number i is scheduled in step number k.

The binding problem can be defined as a solution satisfying the following
constraints:

j = 1.2..... r; k = 1..... max_step; (3.6)

L b;ndingij - 1,

j-I

op'

L bindingij · schedulejl:.:S 1 ,
i-I

i=1,2 ops; (3.5)
3.3.2 Clique Partitioning and Graph Colouring

Allocation and binding can also be defined as graph problems. They can be
formulated either as the problem of finding cliques in a compatibility graph or
that of coloring vertices in a conflict graph.

A compatibility graph is used to represent information on resource sharing.

84 Chapter 3: High-Level Synthesis 3.3 Data Path Allocation and Binding 85

Figure 3.12: A confEct-graph e~ample.

Example 3.9: Let us consider the previous example. The resource­
conflict graph, depicted in Figure 3.12, has only two edges representing
two resource conflicts for addition/substraction operations. Addition
operations I and 4 are executed in parallel during the first control step
and addition/substraction operations 6 and 8 are executed in parallel in
control step 2. In this case, the subgraph for addition/substraction needs
be colored using two colors while the multiplication subgraph requires
only one color. A coloring scheme is captured in Figure 3.12. which

again is not unique.

I~C!) -C!) (2;)

To show other approaches to allocation and binding we discuss the left-edge
algorithm which is used very often for register allocation and binding.

The left-edge algorithm was originally introduced to perform the channel
routing task. It was used for assigning interconnections (trunks) into a number
of tracks in a channel. In the original formulation of the algorithm, the channel
was oriented horizontally and the algorithm sorted trunks in an increasing order
of their left end-points. The algorithm assigned trunks into successive tracks
starting from the first one. For every track it scanned the ordered list of
unplaced trunks and placed them one by one into successive available parts of
the track. We will use this algorithm for the assignment of variables into

registers.
The left-edge algorithm requires information about the life-time of variables.

The life-time of a variable is the time interval when the variable is used by the
computation. It can be represented as a bar drawn in parallel to our scheduled

3.3.3 Left·Edge Algorithm

o
Both the maximal clique-partitioning problem and the minimal graph­

coloring problem are intractable for realistic-size examples. Thus heuristics.
which generate solutions quickly without guaranteeing optimality, have widely
been used. We can also make use of the fact that these two problems form each
other's dual. The two graphs are complementary to each other and the
complexity of one formulation could be much less than the other. This makes it
possible to select the formulation with a less complex graph for a given binding
problem in order to speed up the binding process.

Figure 3.11: A resource-compatibility graph example.

Two operations are compatible, and can share the same hardware resource, if
they are of the same type and are not executed at the same time. A compati­
bility graph Gcomp(V, E) is built of vertices V denoting operations and edges E
denoting the compatibility relation between the operations. A vertex vi is
connected to a vertex Vj if the two operations they represent can be assigned to
the same resource. An example of a compatibility graph is depicted in Figure
3.1!.

To solve the binding problem using compatibility graphs, we have to find a
maximal set of compatible operations. This can be formulated as a maximal
clique partitioning problem. A clique is defined as a subgraph where all nodes
are connected to each other. It is maximal if it is not contained in any other
clique.

Example 3.8: Let us consider the example depicted in Figure 3.10.
Based on the given schedule and the assumption that addition and
substraction operations can share the same resource, a compatibility
graph can be built as shown in Figure 3.11. Three maximal cliques can
be identified as depicted by bold edges in Figure 3.11. Two cliques (I, 2,
6. 7} and {4, 8} represent the binding of the addition/substraction opera­
tions to two adders while the clique (3. 5, 9, 10) represents the binding
of the multiplication operations to one multiplier. Note that the solution
is not unique and other solutions are also possible. For example. we can
also identify other two cliques. (2. 4, 7, 8) and {I, 6}, for the addition/
substraction operations.

o
A conflict graph, on the other hand, captures the opposite information as the

compatible groups. It denotes explicitly the operations that cannot share the
same resource. A conflict graph Gconfliet(V, E) is built of vertices V denoting
operations and edges E denoting the conflict relation between them. A vertex Vi

is connected to a vertex Vj if the two operations they represent cannot be
assigned to the same resource. An example of a conflict graph is depicted in
Figure 3.12.

The binding problem in this case is solved using a graph coloring algorithm.
The algorithm assigns different colors to vertices connected by edges while
minimizing the number of colors.

86 Chapter 3: High-Level Synthesis 3.4 Controller Synthesis 87

it i2 i3 i4 is i6 i7 is i9 ilOill
il i2 i3 i4 is i6 i1 is i9i10ill

~~ ~~~~
~. ~d ~C

~ll
g 14

r ~Q
002 0 03 (a) The sorted list of variables (b) Assignment of variables into registers

Figure 3.13: Variable life-times Figure 3.14: Applying the left-edge algorithm for register allocation

Figure 3.15: Variable life-times and conflict graph.

3.4 Controller Synthesis

o

(c) Conflicl graph(b) Variable life-lime(aJ Sequencing graph

As stated earlier, system synthesis deals with systems usually specified as a set
of communicating concurrent processes. In this case the controller synthesis is

neither unique nor necessarily optimal in terms of, for example, the number of
multiplexors required.

Example 3.11: Consider the sequencing graph depicted in Figure 3.15a.
Figure 3.15b depicts its variable life-times while in Figure 3.15c the
conflict graph for all variables is shown. This graph can be colored wIth
three colors which gives an assignment of three registers.

design. The starting point of the bar represents the time when the variable is set
and the end of the bar represents the time when the variable is released and its
value is not used any longer. In other words, the bar represents define-use time
for the variable. On the right hand side of Figure 3.13 there are bars repre­
senting the life-times of the 21 variables used in the example given on the left
hand side.

A possible solution to the register-assignment problem can use the original
formulation of the left-edge algorithm. In this solution all bars representing the
life-times are sorted in increasing order of their starting points. The algorithm
proceeds then with one register at a time. It assigns the first variable from the
list, represented by a bar, into the first register. It then scans the sorted bars and
the first encountered unbound bar which has start time higher than the end-time
of the already assigned bar is placed into the same register. II continues this
process by assigning the next variables into the same register. If the life-time of
this register reaches the last scheduled step the algorithm starts to assign
variables into the next register using the same method.

Example 3.10: Consider the assignment of the 21 variables used in the
example depicted in Figure 3.13. The first step sorts all bars and the
resulting sorted list of variables is depicted in Figure 3.14a. The final
assignment of variables into registers is depicted in Figure 3.14b.

o
The left-edge algorithm will allocate the minimum number of registers, but

has two disadvantages. First, not all life-time tables might be interpreted as
intersecting intervals on a line. For example. the existence of conditional
branches prohibits the interpretation of intersecting intervals on a line, since
values occuring in mutural exclusiove branches may share a register although
they seem to overlap in life-time [MLD92]. Second, the allocation produced is

88 Chapter 3: High-Level Synthesis 3.4 Controller Synthesis 89

Figure 3.16: A controller/data path architecture.

~
signals

~p. 9 ."
+ •

s,~.
conditions

.

highly dependent not only on the functionality of the controllers but also on the
interaction and synchronization requirements. Traditional high-level synthesis
methods, which 3rc limited to synthesis of one concurrent process at a time,
produce poor results or cannot deal with such designs. One important system
synthesis task is thus to propose an efficient control engine which may include
several cooperating controllers.

An efficient method to implement a controller is to use a finite state machine
(FSM) notation. The FSM formalism makes it possible to specify a number of
s~ates together with transitions between them. An FSM can be defined using
eIther Mealy or Moore machine style. Formally, an FSM can be defined by the
following 5-tuple:

controller

control

data path

<s. I, 0,0, A.>, where

S is a set of slates;
1 is a set of inputs (conditions);
o is a set of outputs (control signals);
ois a next-state function, 0: SX 1--> S. and
A is an output function, A: S X 1--> 0 for Mealy machine or A: S --> 0 for Moore
machine.

In this book, we assume that a controHee is finally implemented as one or
several FSMs.

The above formulation defines an FSM as a machine which has a number of
states. The machine can go from one state to another by executing the next­
state function. The next state is determined based on the current state and the
input signals. The output signals are determined by the output function. For
Mealy machines the output signals are generated based on the current sate and
the input signals while for Moore machines they depend only on the current
state.

A controller is usually graphically represented by a state diagram. The state
~jagram is a directed graph with nodes denoting states and arcs denoting transi­
tIOns from one state to another. The control signals can be assigned either to
states or arcs depending on the machine styJe while guarding conditions are
assigned t~ arcs. A transition from a given state to the next state takes place if
and only If the controller is in the given state and the guard assigned to the
transition arc connecting both states is true.

In our formulation the controller, consisting of one or several FSMs, is used
to control data path activities. The output signals are used to control data path
op~rations while the in~ut signals are conditions generated from the data path
to mfluence the executIOn of the controller. Figure 3. J6 represents schemati­
cally the general view of the controller and its relation to the data path.

After generating the FSM specification it is a logic synthesis task to perform
further optimization steps, such as state minimization and state encoding, using

standard FSM synthesis methods [DeMi94a]. However, some decisions
regarding the selection of the control structure have to be made during system
synthesis. At this stage it should be decided if a single controller will be used to
control the whole design or rather several cooperating controllers will be used.
It can also be decided if a hierarchical controller can be used. The selection of
controller style depends on the synthesis problem formulation and design
criteria, such as performance, area and testability. These decisions deal mainly
with the overall architecture of the controller rather than its detailed implemen­
tation.

3.4.1 Controller-Style Selection

In this section, we discuss several design styles which can be used to
implement complex controllers. The main idea of the presented approaches is
to implement a complex control structure by several smaller controllers in order
to simplify the design of the generated FSMs.

Single Controller

In this style, the controller is modeled by a single FSM, which is the simplest
solution to the controller-style selection problem. Since an FSM is a sequential
machine parallelism is only allowed for operations assigned to the same state.
Otherwise operations have to be statically scheduled and assigned to consec­
utive states. The method is very efficient for simple computations but in the
case of several parallel execution threads it can lead to the state explosion
problem, especially when parallel loops are involved.

Hierarchical Controller

A hierarchical controller consists of a number of simple controllers organized
in a hierarchy. It is assumed that the hierarchy of controllers is ordered by their
parent-child relation. The parent controller distributes an execution task among

90 Chapter 3: High-Level Synthesis 3.4 Controller Synthesis 91

Figure 3.17: An example of a hierarchical controller.
completion

So
activation

S.

the master
controller

S,

So

loopl

loop2child controllerparent controller

a hierarchical state

Figure 3.18: Using parallel controllers for two loops.

communicate to exchange data or synchronize their execution. Generally
speaking, decomposition of a controller into a number of parallel controllers
reduces the overall controller complexity and solves some deSign problems.
However, It requires new design methods.

In some cases, several parallel controllers do not need to synchronize. They
are executed independently of each other. The activation/completion signals
can then be used for correct sequencing of operations between a master
controller and these parallel controllers, which is illustrated in the following

example.

Example 3.13: A design specification includes two consecutive loops as
depicted in Figure 3.l8a. The computations of the loops are data
independent and can be executed in parallel to speed up the computat.lon.
The generation of one sequential controller for the parallel computatIOns
is impossible in practice since the generated controller should include all
combination of states in the two loops which results in a combinational
explosion of states. It is possible. however. to generate one master
controller which activates two independent parallel controllers, one for
each loop, as illustrated in Figure 3.18b. This solves the performance
problem while keeping the controller size small.

o
Conditions are used to specify synchronization between parallel controllers,

when needed. The controller which is to be synchronized has a conditional state
transition. This transition from one state to another will take place only in the
case when the condition assigned to the edge connecting these two states is
TRUE. The condition can be set by another controller. Using conditions
different communication protocols between two or more parallel controllers
can be implemented. Using this strategy we can specify hierarchical controllers

a number of child controllers. Every child controller starts its execution upon
receiving the activation signal and it sends a completion signal upon execution
termination. The parent controller continues its execution when the child
controller sends a completion signal. The child controller can be a parent
controller for another lower-level child controller.

Hierarchical controllers usually make use of two special internal control
signals. called activation and completion. The activation signal is used to start
another controller and the completion signal provides information about termi­
nation of the execution of a controller. They are only used for controller
synchronization.

Example 3.12: Figure 3.17 presents an example of a hierarchical
controller. In this example. state S I is hierarchical and is implemented by
a child controller consisting of three states Sj, Sj and Sk' It is activated
by the parent controller, with an activation signal. The parant controller
will continue its execution upon receiving the completion signal from
the child controller.

o
Hierarchical controllers can be used to implement in a natural way several

control structures which are commonly used in algorithmic languages, such as
procedure and loop constructs. Procedures are well suited for this because their
purpose is to create a hierarchy of subprograms. A process calls a procedure
and continues upon the procedure return. It matches the hierarchical controller
principles very well. A large program can also be restructured by partitioning it
into loop-free parts by structuring loops as subprograms. These structures can
later use the hierarchical controller concept to implement efficient control
engines [DeMi94a].

Parallel Controller

The function of a controller can also be distributed into several smaller
controllers which are executed in parallel. These parallel controllers can

(a) The original specification (b) Use of parallel controllers

9, Chapter 3: High-Level Synthesis 3.4 Controller Synthesis 93

(a) Scheduled data-flow description

A<O:7>C<.O~7> 8<0:7> 0<0:7>

~

G F
(b) RTL data path structure

GF

Controller #1 Controller #2

Figure 3.19: Two parallel controllers communicating using condition C.

with very complex synchronization schemes.
Communication between parallel controllers can be achieved using a special

protocol implemented using the basic technique described above together with
data exchange through shared data path objects.

Example 3.14: Let us consider two parallel controllers which commu­
nicate as depicted in Figure 3.19. They use a handshake protocol to
synchronize their execution and exchange data. Controller #1 waits in
state S I for condition C to become TRUE. The condition is set by
controller #2 in state R I . In state Se controller #1 can fetch data set by
controller #2. Then controller #1 resets condition C and controller #2
continues its execution.

o
Many current design methods offer efficient algorithms for the synthesis of

synchronous FSMs. In many cases. however. this limits possible design space
exploration and results in over-synchronized controllers. It should be noted that
a proper combination of asynchronous and synchronous design styles can solve
some of these problems. For example. basic controllers can be implemented as
synchronous machines controlled by one clock or several independent clocks
while their communication can follow an asynchronous protocol. This solution
gives the freedom of using asynchronous design rules for controller synchroni­
zation and communication while using well-known synchronous design
methods for single controllers.

It should be noted that this solution with ctivation and completion signals is
the only possible one for the class of designs which have operations with
unbounded-delays. We cannot schedule these operations to any particular clock
cycle or a number of clocks cycles since the execution time can not be deter­
mined beforehand (see. for example. [DeMi94a)).

50: M3-0, Load R3, M4_0, Load R4 next 51:
51: Add, M2_', Load R2, M1.1, Load Rl, M3-1, Load R3, M4.1, Load R4

next 82;

82: Add, M1.0, Load R1, Mul, M4-=2, load R4 next 83;

53: Mul, M2.0, Load R2 next...

(c) Control description (FSM)

Figure 3.20: A design example with the generated FSM.

3.4.2 Controller Generation

When the controller style has been selected and the number of FSMs is
decided. we need to generate these FSMs. The FSMs can be represented. for
example. as state diagrams or symbolic FSMs and later implemented using
standard FSM synthesis methods.

The controller generation task has to decide whether the Moore or the Mealy
machine should be used. This decision is mainly dependent on the design repre­
sentation used and the available back-end logic synthesis tools. However. every
Mealy machine can be converted into an equivalent Moore machine and vice
versa. In this book, we will assume that the Moore machine is used.

Example 3.15: Consider the scheduled data-flow graph given in Figure
3.20a which assumes the use of one adder and one multiplier. The
schedule for this graph consists of three control steps. A data path imple­
mentation after the binding of functional units, registers and multi­
plexors. is depicted in Figure 3.20b. Variables E and t3 are assigned to
register RI. variables G. tl and t2 to register R2, variables A and C to
register R3, and variables B. D and F to register R4. Modules MI. M2.
M3 and M4 represent multiplexors. The controller is given in Figure

94 Chapter 3: High-Level Synthesis 3.4 Controller Synthesis 95

o

3.20c in the form of a symbolic FSM instead of a state diagram. It has
four states. The first state, SO, loads registers R3 and R4 with the values
of variables A and B respectively. Control signals for multiplexors and
registers are generated in this state. The signals M3=0 and M4=0 open
the first input of the respective multiplexors while control signals Load
R3 and Load R4 trigger the register loading. The next states perform the
computations specified in the data-flow graph.

The VHDL description depicted on Figure 3.21 gives a possible synthe­
sizable code for this FSM. The FSM has two input signals, reset and
clock, and a number of control output signals. In this case, there are no
input conditions which decide about the next-state selection. The
description contains three processes: The process
state_decade_logic implements the next-state function and the
process output_decade_logic implements the output function. If the
design would have had input condition signals the process
state_decade_logic would have implemented the next-state
selection as additional conditional statements, such as if-statement, in
stead of the main case-statemenl. The process state_register imple­
ments the change of the state every clock cycle as well as the reselling of
the state register to state SO on the reception of the reset signal.

Depending on the selected style of the controller a different controller structure
has to be implemented. However, the basic structure is based on the implemen­
tation of a single FSM. This basic implementation, together with additional
hardware for complex controlJer synchronization and communication, is used
for other types of controllers.

The single FSM controller can be implemented using random logic,
microcode or PLAs. The general implementation structure is very similar, not
matter which technique is used. A state register is used to store the current state
while combinational logic is used to generate the next state based on the
current state and the conditions coming from the data path. The current state is
also used to generate control signals for the data path since we assume the use
of Moore machines. In some cases, additional decoding and coding can be used
for the control signals and the conditions respectively. Figure 3.22 illustrates
the general implementation structure of the basic controller.

The basic controller can then be used as a building block to create complex
controllers described previously. Both control signals and conditions generated
by the basic controller are used for synchronization purpose. In addition, data
path elements can be used to create complex communication facilities required
by the given controller.

Figure 3.21: VHDL specification of the FSM given in Figure 3.20c.

present_state
state_decode_logic;

end case;
end process

end controller;

output_decade_logic : process (present_state)
begin

HI <- '0'; H2 <- '0'; H3 <- '0'; H4 <- '00';
Load_R1 <- '0'; Load_R2 <- '0'; Load_R3 <- '0';
Load_R4 <- '0'; Add <- '0'; Hul <- '0';

case present_state is
when 50 -> H3 <- '0'; Load R3 <- '1'; H4 <- '00';

Load_R4 <-' l' ;
when 51 -> Add <- '1'; M2 <- '1'; Load_R2 <- '1';

HI <- '1'; Load_Rl <- '1'; H3 <- '1';
Load_R3 <- '1'; H4 <- '01'; Load_R4 <- '1';

when 52 -> Add <- '1'; HI <- '0'; Load_R1 <- '1';
Mul <- 'I'; H4 <- '10';

when 53 -> Mul <- '1'; H2 <- '0'; Load_R2 <- '1';

state_decade_logic ; process (present_state)
begin

case present_state is
when 50 -> next_state <- 51;
when 51 -> next_state <- 52;
when 52 -> next_state <- 53;
when 53 -> next_state <- ... ,

architecture controller of F5H is
type state is (SO, 51, 52, 53);
signal present_state, next_state : state;

begin -- controller
state_register: process (reset, clock)

begin
if (reset - '0') then

present_state <- SO;
elaif (clock - 'I' and clock'EVENT) then

present_state <- next_state;
end if;

end process state_register;

end case; present_state
end process output_decade_logic;

entity FSH ia
port (reset, clock : in BIT;

HI, H2, H3, Add, Hul, Load_RI, Load_R2, Load_R3,
Load_R4 : out Bit;
H4 : out Bit_vector (0 to 1»;

end F5H;

Controller Implementation3.4.3

3.4 Controller Synthesis

Clock 1

97

Next state
computation

con/roller #2

State register

conditions

control signals

Clock 2

acknowledge

control si nab

con/roller #1

Next state
computation

Slate register

.---.
State register

Nut state
computation

Chapter 3: High-Level Synthesis96

o

Figure 3.22: The general structure for the controller implementation.

Example 3.16: Figure 3.23 depicts a possible implementation of hierar­
chical controllers introduced earlier. The parent controller uses one of
the control signals as an activation signal for a child controller. The child
controller gets this signal as a condition signalling the start of the
controller. After finishing its execution the child controller sends another
control signal which is interpreted as a completion signal by the parent
controller. Both the parent and the child controller have to use the same
clock in this case.

o
Parallel controllers can synchronize using a method similar to the one

sketched for hierarchical controllers. In morc complex situations they require
additional hardware for synchronization and data exchange. In general a
protocol must be implemented between parallel controllers to provide correct
means for communication. The most frequently used protocol is called the
handshaking protocol. It uses request-acknowledge signals to establish commu­
nication. The controller which starts communication sends a request signal to
the other controller and waits for the acknowledge signal. When the other
controller receives the request signal it executes the needed operations and after
that scnds back the acknowledge signal. Both controllers continue their normal
execution after the communication.

Figure 3.24: An implementation of a handshaking protocol between two parallel
controllers.

Example 3.17: Figure 3.24 presents a possible implementation of the
request-acknowledge protocol between two parallel controllers using
two D flip-flops. Controller #1 sends a request signal by setting a D flip­
flop to 1. It stays in this state until controller #2 sends an acknowledge
signal by setting another D flip-flop to 1. This state is recognized by the
first controller which continues its execution. It can be noted that this
solution makes it possible to use independent clocks for controllers. For
example. controller #1 uses Clock 1 while controller #2 uses Clock 2, as
illustrated in the figure. This means that although both controllers are
synchronous themselves the communication between them are
performed asynchronously.

parent con/roller child con/roller
,-----,

control signals
.--

I Stale register I control signals I State register I

fJ: activation completion ~.
i7I-

~-fl: d'
Next state con ltlons conditions Next state

computation computation

Figure 3.23: A hierarchical controller implementation.

