New pre-treatment Andijk Pumping station Andijk (PWN)

Drinking Water Treatment 2 | CT5520

Wouter Bakker and Harmen van der Laan

Sanitary Engineering, Faculty Civil Engineering

Delft University of Technology

Content

- Short report excursion
- Design criteria
- TOC/NOM/DOC
- Influence DOC and Nitrate on UVT
- Present Water Quality

Presentation of alternatives and the final choice

• Next steps

Short report excursion Friday 20 April

The micro sieves were in good working condition.

Flocculation :

- Outdated, too many improvements made on a outdated design.
- Only 2500 m³/h else the thickness of the flock blanket will change

RSF:

- No possibilities to enlarge the RSF inside the existing building.
- It is an upgraded installation (in the past controlled by hand)
- The pipe infrastructure is complex, and hard to reach/repair.

Short report excursion Friday 20 April

Design criteria

Main criteria Enhanced removal of DOC and Nitrate

Desired characteristics

Improvement UVT Lower temperature Chlorine *(incoming water Lobith 200 mg/l – Waterlaw 150 mg/l)* Less Sodium Hydroxide (softening) Less sludge

TOC/NOM/DOC

TOC = Total organic carbon

DOC = Dissolved organic carbon

NOM = Natural organic matter (consists of DOC, colour and turbidity)

TOC = DOC + not dissolved organic carbon

DOC concentration should be lower because of improvement of UVT

DOC is difficult to measure, so no online data available

TOC online data is available from the influent of the UV reactor. Since the RSF already filtered the water the "not dissolved organic carbon" is mostly removed So DOC \approx TOC

TOC = DOC + ?

7

UVT and use of OH[•]

Nitrate

The UV adsorption of the nitrate is high in the range of 200 to 230 nm. This will affect the photolysis from H2O2 to OH^{*} radicals in a negative way. So less OH^{*} radicals will be formed.

Nitrate (NO_3^{-}) will be converted into Nitrite (NO_2^{-}) . Nitrite will react with the OH^{*} radicals. So less OH^{*} radicals are available for the treatment.

To save energy in the UV reactor, nitrate has to be removed in the pretreatment.

DOC

The UV adsorption of the DOC is high in the range of 255 to 265 nm. This will affect the photolysis from H2O2 to OH^{*} radicals in a negative way. So less OH^{*} radicals will be formed.

DOC will react with the OH* radicals. So less OH* radicals are available for the treatment.

The influence of DOC is higher than the influence of NO_3^{-1} .

Present quality pre-treatment

Promising techniques not applicable on short term

- Membrane
- MEMSTILL (enhanced distillation)
- MBR
- Ion-exchange
- Use of vegetable oil to remove nitrate from flowing groundwater
- Waste water way: aerobe and anaerobe zones with active sludge
- Reverse Osmosis

0⁺ alternative: improve existing treatment

Improvement of the existing process, through:

Add extra capacity flocculent/sedimentation Add extra capacity rapid sand filter Extra capacity is min 1500 m³/h

Possibility to add PAC (extra removal DOC)

New process scheme

reservoir - micro sieves - floc/sed - PAC - RSF

0⁺ alternative: improve existing treatment

New process scheme

reservoir - micro sieves - floc/sed - PAC - RSF

DOC removal	+/-
Nitrate removal	0
Costs	++ /
Innovative	
Surface	+
Robustness	
Use of chemicals	+/-
Infrastructure	

+/- *improvement because of PAC*) ++ *low investment costs* --

12

Alternative A Same process, new installation

Complete new installation min 4000 m³/h improved technologies: enhanced coagulation tilted plate settling Possibility to add PAC

New process scheme

reservoir - micro sieves - floc/sed - PAC - RSF

13

Alternative A Same process, new installation

New process scheme reservoir – micro sieves – floc/sed – PAC - RSF

DOC removal	+ <i>in</i>
Nitrate removal	0
Costs	+/-
Innovative	+/-
Surface	
Robustness	++
Use of chemicals	+/-
Infrastructure	+

F	<i>improvement because of PAC</i>	
)		
+/-		
+/-		
+ +		2.0
+/		
+		N

Alternative B Slow sand filtration

New floc/sed installation (tilted plate) Enlarge RSF capacity: by building new filters (+ 2000 m³/h) by improvement existing filters *(during improvement usage of WPJ water)* Slow sand filter for Nitrate removal

Possibility to add PAC

New process scheme

reservoir – micro sieves – floc/sed – PAC - RSF - SSF

Alternative B Slow sand filtration

New process scheme reservoir – micro sieves – floc/sed – PAC - RSF - SSF

DOC removal	++	by double sand filters (RSF & SSF)
Nitrate removal	++	by SSF
Costs		double treatment step UV & SSF
Innovative	+/-	
Surface		
Robustness	++	
Use of chemicals	+/-	
Infrastructure	+	

Alternative C Break-point Chlorination

Same process as Alternative B instead of SSF -> Break-point Chlorination Activated Carbon filter to remove Chlorine ACF removes also extra DOC

New process scheme

reservoir – micro sieves – floc/sed – RSF – Chlorination – Activated Carbon filter

Alternative C Break-point Chlorination

New process scheme

reservoir – micro sieves – floc/sed – RSF – Chlorination – Activated Carbon filter

DOC removal	++	by RSF and ACF
Nitrate removal	++	by BPC
Costs		
Innovative	+	
Surface	+	
Robustness	+	
Use of chemicals		use of Chlorine is not Dutch f
Infrastructure	+/-	more complex pipe-system

Alternative D Bank filtration

Bank extraction: Temperature advantage Groundwater : better DOC

New process scheme Bank extraction - aeration - dry filtration cascade - RSF

Alternative D Bank filtration

New process scheme Bank extraction - aeration – dry filtration – cascade - RSF

DOC removal	++
Nitrate removal	0
Costs	
Innovative	+
Surface	+/-
Robustness	+
Use of chemicals	+
Infrastructure	+

Selection criteria

	0+	А	В	С	D
DOC removal	+/-	+	++	++	++
Nitrate removal	0	0	++	++	0
Investment costs	++	+/-	-	-	-/-
Operational costs	+	+	++	+	+
Innovative	-/-	+/-	+/-	+	+
Surface	+	-	-	+	+/-
Robustness	-	++	++	+	+
Use of chemicals	+/-	+/-	+/-		+
Infrastructure	-	+	+	+/-	+

21

Next steps

• Further design of the selected alternative

