Problem set 6: Quantum measurement

Due 2 Nov 2007

1) Consider a quantum bit in a pure state $|\psi\rangle=a|0\rangle+b|1\rangle$, and a meter initially in the state $|0\rangle_{M}$. A CNOT is performed from the qubit onto the meter, and subsequently the meter is read out, as in the figure. In effect, we are thereby (indirectly) measuring the qubit state.

- What is the joint state of qubit and meter after the CNOT?
- What are the probabilities for the measurement to give outcome 0 or 1 ?
- What is the post-measurement state of the qubit?
- What are the POVM measurement operators $E_{m}(2 \times 2$ matrices $)$ that describe this indirect measurement of the qubit? Verify that $\langle\psi| E_{m}|\psi\rangle$ gives the probability for outcome m.
- Optional, but highly recommended: Find the measurement operators M_{m}, such that the probabilities for obtaining m are given by $\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle$, and such that $M_{m}|\psi\rangle / \sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}$ gives the post-measurement state.
- Is the measurement of the qubit projective?

2) Same questions as under 1), but now with the following measurement circuit,

$$
\begin{gathered}
|\Psi\rangle \\
|0\rangle_{\mathrm{M}} \\
\text { where } U=\sqrt{\text { NOT }}=\sqrt{\frac{-i}{2}}\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)
\end{gathered}
$$

