Problem set 7: Shor's factoring algorithm

Due 9 November 2007

1) Factor the number 15 classically, using the following procedure:

- Randomly pick a number $a<15$, with no factors in common with 15 . NOTE: let us agree to all randomly pick $a=13 \ldots$
- Compute $13^{0} \bmod 15,13^{1} \bmod 15,13^{2} \bmod 15 \ldots$ until you discover the period r of $f(x)=$ 13^{x} mod15.
- Find the greatest common denominator of $13^{r / 2} \pm 1$ and 15 . Check whether the result is a prime factor of 15 .

If you think the answer came out right by chance, try another value of a, e.g. 11 or 7 .
2) Now go through the steps of Shor's algorithm in order to find the period r of $13^{x} \bmod 15$, by writing down the state after each step. Use only three qubits for the first registor, in order to keep things simple. The second register must have four qubits. I recommend that you use decimal instead of binary notation for the states of each register, so for instance write $|011\rangle$ simply as $|3\rangle$.

- Initialize each register to $|0\rangle$.
- Apply the Hadamard gate to each qubit in the first register.
- Add $13^{x} \bmod 15$ to the second register, where x is the state of the first register.
- Rewrite this state so you group all terms with identical $f(x)$ - observe the periodicity in the amplitudes which emerges, and observe also that you cannot efficiently reveal the period by any measurement.
- Apply the Quantum Fourier Transform to the first register.
- Measure the final state of the first register. What are the possible measurement outcomes, and how to they relate to r ?

What would the possible measurement outcomes be if you had taken 8 qubits for the first register and how would you extract r ?

