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Ritz method is an approximative technique to find the solution of a variational problem.
Consider, for example, a variational problem in the form

I[y(x)] =
∫ xb

xa

F (x, y(x), y(x)′) dx; y(xa) = ya; y(xb) = yb. (1)

An extremal would be found as the solution of Euler-Lagrange equation

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (2)

with the essential boundary conditions given in (1).
Ritz method is searching a solution to the variational problem on the functional (1)

directly, rather than on the differential equation (2). The basic idea is to approximate the
solution function y(x) as a linear combination of n known functions hi(x)

ȳ(x) =
n∑

i=1

aihi(x), (3)

where the notation ȳ indicates that (3) is not the exact solution but a mere approximation
and the coefficients ai are unknown scalars. These scalars are determined by substituting
the linear combination (3) into the functional (1). Notice that since the functions hi(x)
are known so are their derivatives. The derivative of ȳ(x) can therefore be written as

ȳ′(x) =
n∑

i=1

aih
′
i(x). (4)

Substituting (3) and (4) into (1), the functional depending on y(x) is converted into a
function Φ of the n variables ai,

Φ(a1, . . . an) =
∫ xb

xa

F

(
x,

n∑
i=1

aihi(x),
n∑

i=1

aih
′
i(x)

)
dx. (5)

Indeed, the functions hi(x) are known and the integration can be carried out with respect
to the variable x. Similarly, the boundary conditions are expressed as

n∑
i=1

aihi(xa) = ya;
n∑

i=1

aihi(xb) = yb, (6)



which are linear expressions in the variables ai. The variational problem has been reduced
to finding the coefficients ai for which the function (5) attains an extreme value, subject
to the restrictions (6). This can, e.g., be done by substituting the restrictions (6) into (5),
differentiating (5) with respect to the remaining variables ai and imposing that these
derivatives are equal to zero.

The functions hi(x) and the coefficients ai are often referred to as shape functions and
degrees-of-freedom respectively. The shape functions must be linearly independent, i.e.,

n∑
i=1

aihi(x) ≡ 0 ⇒ a1 = a2 = · · · = an = 0. (7)

Examples of sets of shape functions fulfilling this property would be, for n = 3,

h1(x) = 1; h2(x) = x; h3(x) = x2, (8)

that is, polynomials of zero, first and second degree, but also a set of second-degree
polynomials only such as

h1(x) = (x− xa)2; h2(x) = (x− xa)(x− xb); h3(x) = (x− xb)2. (9)

The adequate choice for the shape functions hi(x) often depends on the nature of the
problem and the experience of the analyst.

As an example consider the variational problem

I[y(x)] =
∫ 1

0

[
y2 + (y′)2

]
dx; y(0) = y(1) = 1. (10)

Adopting the set of shape functions (8) an approximate solution is sought in the form
stated by (3) as

ȳ(x) = a1 + a2x + a3x
2, (11)

which is rewritten for notational convenience as

ȳ(x) = α + βx + γx2. (12)

Considering that, according to expression (4), ȳ′(x) can be expressed as

ȳ′(x) = β + 2γx (13)

and substituting (12) and (13) into (10), one gets the expression

Φ(a, b, c) =
∫ 1

0

[
(α + βx + γx2)2 + (β + 2γx)2

]
dx (14)

with the restrictions resulting from the boundary conditions,

ȳ(0) = α + β · 0 + γ · 02 = 1 ⇒ α = 1;
ȳ(1) = α + β · 1 + γ · 12 = 1 ⇒ γ = −β;

(15)



The problem is thus reduced to finding the coefficients α, β and γ which provide an
extremum of function (14) subject to the constraints (15). Substituting the constraints
(15) into (14) leads to the expression

Φ(β) =
∫ 1

0

[
(1 + βx− βx2)2 + (β − 2βx)2

]
dx, (16)

which, after integration with respect to x, reduces to

Φ(β) = 1 +
1
3
β +

11
30

β2. (17)

An extremum is found when

dΦ
dβ

=
1
3

+
11
15

β = 0 ⇒ β = − 5
11

. (18)

The solution to (10) is thus approximated by Ritz method as

ȳ(x) = 1− 5
11

x +
5
11

x2 (19)

for the shape functions (8).
The exact solution to (10) can be shown to be

y(x) =
sinh(x) + sinh(1− x)

sinh(1)
. (20)

The plots for ȳ(x) and y(x) in Figure 1 do not exhibit any appreciable difference. How
powerful Ritz method actually is becomes patent on the plot of the relative error

εrel =
y(x)− ȳ(x)

y(x)

represented in Figure 2, where it is appreciated that the maximal relative error is found
for x = 0, 5 and amounts to 0, 05%.

Ritz method is the mathematical foundation of the Finite Element Method. For the
particular case of structural mechanics in static conditions the variational problem is
simply the principle of stationary potential energy. By choosing the shape functions hi(x)
conveniently as piece-wise, low-degree polynomials the evaluation of the integral (5) —or
(16) in the example— can be expedited in such a way that a system of algebraic equations
for the coefficients ai can be automatically set up from a data file including information on
the geometry of the body, the supports (aka constraints) and the applied forces. Solving
this system of algebraic equations provides an approximate solution of the considered
problem.
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Figure 1. Plots of the approximated solution ȳ(x) (left) and the exact solution y(x) (right)
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Figure 2. Plot of the relative error εrel =
y(x)− ȳ(x)

y(x)


