
10
Losses and Efficiency Limits

In the previous chapters we have learned the basic physical principles of solar cells. In
this chapter we will bring the different building blocks together and analyse, how efficient
a solar cell theoretically can be. After discussing different efficiency limits and the major
loss mechanisms, we will finalise this chapter with the formulation of three design rules that
always should be kept in mind when designing solar cells.

It is very important to understand, why a solar cell cannot convert 100% of the incident
light into electricity. Different efficiency limits can be formulated, each taking different
effects into account.

10.1 The thermodynamic limit

The most general efficiency limit is the thermodynamic efficiency limit. In this limit, the
photovoltaic device is seen as a thermodynamic heat engine, as illustrated in Fig. 10.1. Such
a heat engine operates between two heat reservoirs; a hot one with temperature TH and a
cold one temperature TC. For the heat engine, three energy flows are relevant. First, the
heat flow Q̇H from the hot reservoir to the engine. Secondly, the work Ẇ that is performed
by the engine and thirdly, heat flowing from the engine to the cold reservoir that serves as
a heat sink, Q̇C. Clearly, the third energy flow is a loss and consequently, the efficiency of
the heat engine is given by

η =
Ẇ

Q̇h

. (10.1)

The second law of thermodynamics teaches us that the entropy of an independent system
never decreases. It only increases or stays the same. While the heat flows Q̇H and Q̇C

carry entropy, the performed work W is an entropy-free form of energy. Thermodynamics
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Figure 10.1: Illustrating the major heat flows in a generic heat engine.

teaches us that there is an efficiency limit for the transformation of heat into entropy-free
energy. An (ideal) engine that has this maximal efficiency is called a Carnot engine and its
efficiency is given by

ηCarnot = 1−
TC

TH
. (10.2)

For a Carnot engine, the entropy does not increase. Note that all the temperatures must be
given in a temperature scale where the absolute zero takes the value 0. For example, the
Kelvin scale is such a scale. From Eq. (10.2) we can already see two important trends that
are basically true for every heat engine, i.e. also steam engines of combustion engines. The
efficiency increases, if the higher temperature TH is increased and/or the lower temperat-
ure TC is decreased.

Let us now look at a solar cell that we imagine as a heat engine operating between an
absorber of temperature TA (this is our hot reservoir) and a cold reservoir, which is given
by the surroundings and that we assume to be of temperature TC = 300 K. What this heat
engine actually does is that it converts the energy stored in the heat of the absorber into
entropy-less chemical energy that is stored in the electron-hole pairs. Here, we assume that
the transformation of chemical energy into electrical energy happens lossless, i.e. with an
efficiency of 1. Hence, the efficiency of this thermodynamic heat engine is given by

ηTD = 1−
TC

TA
. (10.3)

The absorber will be heated as it absorbs sunlight. As we look at the ideal situation,
we assume the absorber to be a black body that absorbs all incident radiation. Further, we
assume the sun to be a black body of temperature TS = 6000 K. As we have seen in Chapter
5, the solar irradiance incident onto the absorber is given by

IS
e = σT4

S Ωinc, (10.4)

where Ωinc is the solid angle covered by the incident sunlight. As the absorber is a black
body of temperature TA it also will emit radiation. The emittance of the absorber is given
by

EA
e = σT4

AΩemit. (10.5)

Ωemit is the solid angle into that the absorber can emit.
The efficiency of the absorption process is given by

ηA =
IS
e − EA

e

IS
e

= 1−
EA

e

IS
e

= 1−
Ωemit

Ωinc

T4
A

T4
S

. (10.6)
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Figure 10.2: The absorber efficiency ηA, the thermodynamic efficiency ηTD and the combined
solar cell efficiency ηSC under full concentration for a solar temperature of 5800 K and an ambient
temperature of 300 K.

The absorber efficiency can be increased by increasing Ωinc, which can be achieved by con-
centrating the incident sunlight. Under maximal concentration sunlight will be incident onto
the absorber from all angles of the hemisphere, i.e. Ω

max
inc = 2π. We assume the absorber

to be open towards the surroundings and hence the sun on the top side. Its bottom side
is connected to the heat engine such that radiative loss only can happen via the top side.
Therefore, also Ωemit = 2π. Hence, the maximal absorber efficiency is achieved under
maximal concentration and it is given by

ηmaxA = 1−
T4

A

T4
S

. (10.7)

Note that ηA is the larger the lower TA while the efficiency of the heat engine ηTD is the
larger the higher TA.

For the total efficiency of the ideal solar cell we combine Eq. (10.3) with Eq. (10.7) and
obtain

ηSC =

(

1−
T4

A

T4
S

)

(

1−
TC

TA

)

. (10.8)

Figure 10.2 shows the absorber efficiency, the thermodynamic efficiency and the solar
cell efficiency. We see that the solar cell efficiency reaches its maximum of about 85% for an
absorber temperature of 2480 K. Please note that the solar cell model presented in this
section does not resemble a real solar cell but is only intended to discuss the physical
limit of converting solar radiation into electricity. Several much more detailed studies on
the thermodynamic limit have been performed. We want to refer the interested reader to
works by Würfel [25] and Markvart et al. [36–38].
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10.2 The Shockley-Queisser limit

We now will take a look at the the theoretical limit for single-junction solar cells. This limit
is usually referred to as the Shockley-Queisser (SQ) limit, as they where the first ones to
formulate this limit based purely on physical assumptions and without using empirically
determined constants [27]. We will derive the SQ limit in a two-step approach. First, we
will discuss the losses due to spectral mismatch. Secondly, we also will take into account
that the solar cell will have a temperature different from 0 K which means that it emits
electromagnetic radiation according to Planck’s law. Just like William B. Shockley (1910-
1989) andHans-JoachimQueisser (*1931), wewill do this with the detailed balance approach.

10.2.1 Spectral mismatch

There are two principal losses that strongly reduce the energy conversion efficiency of
single-junction solar cells. As discussed in Chapter 8, an important part of a solar cell is
the absorber layer, in which the photons of the incident radiation are efficiently absorbed
resulting in a creation of electron-hole pairs. In most cases, the absorber layer is formed by
a semiconductor material, which we characterise by its bandgap energy EG. In principle,
only photons with energy higher than the band gap energy of the absorber can generate
electron-hole pairs. Since the electrons and holes tend to occupy energy levels at the bot-
tom of the conduction band and the top of the valence band, respectively, the extra energy
that the electron-hole pairs receive from the photons is released as heat into the semicon-
ductor lattice in the thermalisation process. Photons with energy lower than the band gap
energy of the absorber are in principle not absorbed and cannot generate electron-hole
pairs. Therefore these photons are not involved in the energy conversion process. The
non-absorption of photons carrying less energy than the semiconductor band gap and the
excess energy of photons, larger than the band gap, are the two main losses in the energy
conversion process using solar cells. Both of these losses are thus related to the spectral
mismatch between the energy distribution of photons in the solar spectrum and the band
gap of a semiconductor material.

Shockley and Queisser call the efficiency that is obtained when taking the spectral mis-
match losses into account the ultimate efficiency, that is given according to the hypothesis
that ‘each photon with energy greater than hνG produces one electronic charge q at a voltage of
VG = hνG/e’ [27].

Let us now determine the fraction of energy of the incident radiation spectrum that is
absorbed by a single-junction solar cell. When we denote λG as the wavelength of photons
that corresponds to the band gap energy of the absorber of the solar cell, only the photons
with λ ≤ λG are absorbed. The fraction pabs of the incident power that is absorbed by a
solar cell and used for energy conversion can be expressed as

pabs =

∫ λG
0

hc
λ Φph, λ dλ

∫

∞

0
hc
λ Φph, λ dλ

, (10.9)

where Φph, λ is the spectral photon flux of the incident light as defined in Chapter 5. The
fraction of the absorbed photon energy exceeding the bandgap energy is lost because of
thermalisation. The fraction of the absorbed energy that the solar can deliver as useful
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Figure 10.3: The fraction of the AM1.5 spectrum that can be converted into a usable energy by a
crystalline silicon solar cell with EG = 1.12 eV.

energy is then given by

puse =
EG

∫ λG
0 Φph, λ dλ

∫ λG
0

hc
λ Φph, λ dλ

. (10.10)

By combining Eqs. (10.9) and (10.10), we can determine the ultimate conversion efficiency,

ηult = pabspuse =
EG

∫ λG
0 Φph, λ dλ

∫

∞

0
hc
λ Φph, λ dλ

. (10.11)

Figure 10.3 illustrates the fraction of the AM1.5 spectrum that can be converted into a
usable energy by a crystalline silicon solar cell. Figure 10.4 shows the ultimate conversion
efficiency in dependence of the the absorber band gap for three different radiation spec-
tra, black-body radiation at 6000 K, AM0 and AM1.5 solar radiation spectra. The figure
demonstrates that in case of a crystalline silicon solar cell (EG = 1.12 eV) the losses due
to spectral mismatch account for almost 50%. It also shows that an absorber material for
a single junction solar cell has an optimal band gap of 1.1 eV and 1.0 eV for the AM0 and
AM1.5 spectra, respectively. Note that the maximum conversion efficiency for the AM1.5
spectrum is higher than that for AM0, while the AM0 spectrum has a higher overall power
density. This is because of the fact that the AM1.5 spectrum has a lower power density in
parts of the spectrum that are not contributing to the energy conversion process as can be
seen in Fig. 10.3. The dips in the AM1.5 spectrum also result in the irregular shape of the
conversion efficiency as function of the band gap.

10.2.2 Detail balance limit of the efficiency

Similar to Shockley and Queisser we nowwill formulate the detail balance limit of the efficiency.
But beforewe start we brieflywill discuss the reason that the ultimate efficiency formulated
above is not physical for solar cells with temperatures higher than 0 K.
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Figure 10.4: The ultimate conversion efficiency for the black body spectrum at 6000 K, the AM0
and AM1.5 solar radiation spectra, limited only by the spectral mismatch as a function of the band
gap of a semiconductor absorber in single junction solar cells.

Let us estimate that the solar cell is embedded in an environment of ambient temper-
ature of 300 K and that the solar cell temperature also is 300 K. As the solar cell will be
in thermal equilibrium with its surroundings, it will absorb thermal radiation according
to the ambient temperature and it will also emit the same amount of radiation. Therefore
recombination of electron-hole pairs will be present in the semiconductor leading to a re-
combination current density different from zero. As we have seen in Eq. (9.1), the open cir-
cuit voltage will be reduced with increasing recombination current, which is an efficiency
loss.

For deriving the detailed balance limit we first recall the definition of the efficiency
from Eq. (9.5),

η =
JphVoc FF

Pin
. (10.12)

For calculating ηult we made the assumption that ‘each photon with energy greater than hνG

produces one electronic charge q at a voltage of VG = hνG/q’. Under the same assumption, we
obtain for the short circuit current density

Jph(EG) = −q
∫ λG

0
Φph, λ dλ (10.13)

with λG = hc/EG. Note that we here implicitly assumed that the photo-generated current
density Jph is equivalent to the short circuit current density. This approximation is valid as
the recombination current originating from thermal emission is orders of magnitude lower
than the photo-generated current. By combining Eqs. (10.11) and (10.13) we find

Jph = −
q

EG
Pinηult = −

Pinηult
VG

. (10.14)
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Let us now define the bandgap utilisation efficiency ηV that is given by

ηV =
Voc
VG

(10.15)

and tells us the fraction of the bandgap that can be used as open-circuit voltage (Shockley
and Queisser use the letter v for this efficiency). We now combine Eqs. (10.12), (10.14) and
(10.15) and find

η = ηultηV FF. (10.16)

For determining the efficiency in the detailed balance limit, we therefore must determine
the bandgap utilisation efficiency and the fill factor. Let us start with ηV .

According to Eq. (9.1), the open circuit voltage will be reduced with increasing recom-
bination current density, which is an efficiency loss. It is given as

Voc =
kBT

q
ln

(

Jph

J0
+ 1

)

. (10.17)

The only unknown in this equation is the dark current density J0. We assume the solar cell
to be in thermal equilibrium with its surroundings at an ambient temperature of Ta = 300 K.
Further, we assume that the solar cell absorbs and emits as a black body for wavelengths
shorter than the bandgap wavelength of the solar cell absorber. For wavelengths longer
than the bandgap we assume the solar cell to be completely transparent thus to neither
absorb nor emit. This is the same assumption that we already used for the absorption of
sunlight.

Using the equation for the blackbody radiance LBB
eλ as given in Eq. (5.18a) we find for the

radiative recombination current density

J0(EG) = −2q
∫ λG

0

∫

2π
LBB

eλ (λ; Ta) cos θ dΩdλ

= −2qπ

∫ λG

0

2hc2

λ5

[

exp

(

hc

λkBTa

)

− 1

]−1

dλ,

(10.18)

where the factor 2 arises from the fact that we assume the solar cell to emit thermal radi-
ation both at its front and back sides.

Combining Eqs. (10.15) with (10.17) we find

ηV(EG) = kBT/EG ln

[

Jph(EG)

J0(EG)
+ 1

]

. (10.19)

Figure 10.5 shows the bandgap utilisation efficiency for three different spectra of the incid-
ent sunlight. For a bandgap of 1.12 eV this efficiency is about ηV ≈ 77%.

For the fill factor we take the empirical but very accurate approximation

FF =
voc − ln (voc + 0.72)

voc + 1
(10.20)

with voc = qVoc/kBT. We already discussed this approximation in Eq. (9.3).
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Figure 10.5: The bandgap utilisation efficiency ηV for the black body spectrum at 6000 K, and
the AM0 and AM1.5 solar spectra.
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Figure 10.6: The Shockley-Queisser efficiency limit for the black body spectrum at 6000 K, and
the AM0 and AM1.5 solar spectra.
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Figure 10.7: The major loss mechanisms in the Shockley Queisser limit. For this calculation the
AM1.5 spectrum was used as incident light.

Figure 10.6 finally shows the Shockley-Queisser efficiency limit for three different spec-
tra of the incident light. For the AM1.5 spectrum the limit is about 33.1% at 1.34 eV. For
AM0 it is 30.1% at 1.26 eV.

The major loss mechanisms that are taken into account in the Shockley-Queisser limit
are illustrated in Fig. 10.7. The major losses are non-absorbed photons below the bandgap
and thermalised energy of photons above the bandgap. The other losses are due to the
voltage loss because of thermal radiation and the fill factor being different from 100%.

10.2.3 Efficiency limit for silicon solar cells

It is very important to note that the Shockley-Queisser (SQ) limit is not directly applicable
to solar cells made from crystalline silicon. The reason for this is that silicon is a so-called
indirect bandgap semiconductor as we will discuss in detail in Chapter 12. This means that
Auger recombination, which is a non-radiative recombination mechanism, is dominant.
For the derivation of the SQ limit we assumed that only radiative recombination is present.
Clearly, this assumption cannot be valid for crystalline silicon solar cells. Several attempts
to calculate the efficiency limit while taking radiative recombination mechanisms into ac-
count were performed in the past. A study from 2013 by Richter et al. derives an efficiency
limits of 29.43% for silicon solar cells .

As the Shockley-Queisser limit only considers radiative recombination, it is most valid
for direct band gap materials such as GaAs. Because of its direct band gap, radiative re-
combination is the limiting recombination mechanism for GaAs.

10.3 Additional losses

The Shockley-Queisser limit is a very idealised model. For example all optical losses are
neglected. Nowwewill discuss several loss mechanisms that have to be taken into account


