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Figure 6.2: The bonding model for c-Si. (a) No bonds are broken. (b) A bond between two Si
atoms is broken resulting in a free electron and hole.

6.3 Doping

The concentrations of electrons and holes in c-Si can be manipulated by doping. Doping of
silicon means that atoms of other elements substitute Si atoms in the crystal lattice. The
substitution has to be carried out by atoms with three or five valence electrons, respect-
ively. The most used elements to dope c-Si are boron (B) and phosphorus (P), with atomic
numbers of 5 and 15, respectively.

The process of doping action can best be understood with the aid of the bonding model
and is illustrated in Fig. 6.3. When introducing a phosphorus atom into the c-Si lattice,
four of the five phosphorus atom valence electrons will readily form bonds with the four
neighbouring Si atoms. The fifth valence electron cannot take part in forming a bond and
becomes rather weakly bound to the phosphorus atom. It is easily liberated from the phos-
phorus atom by absorbing the thermal energy, which is available in the c-Si lattice at room
temperature. Once free, the electron can move throughout the lattice. In this way the phos-
phorus atom that substitutes a Si atom in the lattice “donates” a free (mobile) electron into
the c-Si lattice. The impurity atoms that enhance the concentration of electrons are called
donors. We denote the concentration of donors by ND.

An atom with three valence electrons such as boron cannot form all bonds with four
neighbouring Si atoms when it substitutes a Si atom in the lattice. However, it can readily
“accept” an electron from a nearby Si-Si bond. The thermal energy that the c-Si lattice
contains at room temperature is sufficient to enable an electron from a nearby Si-Si bond to
attach itself to the boron atom and complete the bonding to the four Si neighbours. In this
process a hole is created that can move around the lattice. The impurity atoms that enhance
the concentration of holes are called acceptors. We denote the concentration of acceptors by
NA.

Note that by substituting Si atoms with only one type of impurity atoms, the concen-
tration of only one type of mobile charge carriers is increased. Charge neutrality of the
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Figure 6.3: The doping process illustrated using the bonding model. (a) A phosphorus (P) atom
substitutes a Si atom in the lattice resulting in the positively-ionised P atom and a free electron, (b)
A boron (B) atom substitutes a Si atom resulting in the negatively ionised B atom and a hole.
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Figure 6.4: The range of doping levels used in c-Si.

material is nevertheless maintained because the sites of the bonded and thus fixed impur-
ity atoms become charged. The donor atoms become positively ionised and the acceptor
atoms become negatively ionised.

The possibility to control the electrical conductivity of a semiconductor by doping is
one of the most important semiconductor features. The electrical conductivity in semicon-
ductors depends on the concentration of electrons and holes as well as their mobility. The
concentration of electrons and holes is influenced by the amount of the doping atoms that
are introduced into the atomic structure of the semiconductor. Figure 6.4 shows the range
of doping that is used in case of c-Si. We denote a semiconductor as p-type or n-type when
holes or electrons, respectively, dominate its electrical conductivity. In case that one type
of charge carriers has a higher concentration than the other type these carriers are called
majority carriers (holes in the p-type and electrons in the n-type), while the other type with
lower concentration are then called minority carriers (electrons in the p-type and holes in
the n-type).
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6.4 Carrier concentrations

6.4.1 Intrinsic semiconductors

Any operation of a semiconductor device depends on the concentration of carriers that
transport charge inside the semiconductor and hence cause electrical currents. In order to
determine and to understand device operation it is important to know the precise concen-
tration of these charge carriers. In this section the concentrations of charge carriers inside a
semiconductor are derived assuming the semiconductor is under thermal equilibrium. The
term equilibrium is used to describe the unperturbed state of a system, to which no ex-
ternal voltage, magnetic field, illumination, mechanical stress, or other perturbing forces
are applied. In the equilibrium state the observable parameters of a semiconductor do not
change with time.

In order to determine the carrier concentration one has to know the function of density
of allowed energy states of electrons and the occupation function of the allowed energy
states. The density of energy states function, g(E), describes the number of allowed states
per unit volume and energy. Usually it is abbreviated with Density of states function (DoS).
The occupation function is the Fermi-Dirac distribution function, f (E), which describes
the ratio of states filled with an electron to total allowed states at given energy E. In an
isolated Si atom, electrons are allowed to have only discrete energy values. The periodic
atomic structure of single crystal silicon results in the ranges of allowed energy states for
electrons that are called energy bands and the excluded energy ranges, forbidden gaps or
band gaps. Electrons that are liberated from the bonds determine the charge transport in
a semiconductor. Therefore, we further discuss only those bands of energy levels, which
concern the valence electrons. Valence electrons, which are involved in the covalent bonds,
have their allowed energies in the valence band (VB) and the allowed energies of electrons
liberated from the covalent bonds form the conduction band (CB). The valence band is sep-
arated from the conduction band by a band of forbidden energy levels. The maximum
attainable valence-band energy is denoted EV , and the minimum attainable conduction-
band energy is denoted EC. The energy difference between the edges of these two bands is
called the band gap energy or band gap, Eg, and it is an important material parameter.

EG = EC − EV . (6.1)

At room temperature (300 K), the band gap of crystalline silicon is 1.12 eV. A plot of the
allowed electron energy states as a function of position is called the energy band diagram;
an example is shown in Fig. 6.5 (a).

The density of energy states at an energy E in the conduction band close to EC and in
the valence band close to EV are given by

gC(E) = 4π

(

2m∗n
h2

)
3
2 √

E− EC, (6.2a)

gV(E) = 4π

(

2m∗p

h2

)

3
2
√

E− EV , (6.2b)

where m∗n and m∗p is the effective mass of electrons and holes, respectively. As the electrons
and holes move in the periodic potential of the c-Si crystal, the mass has to be replaced
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Figure 6.5: (a) The basic energy band diagram with electrons and holes indicated in the conduc-
tion and valence bands, respectively. (b) The density of states (DOS) functions gC in the conduc-
tion band and gV in the valence band. (c) The Fermi-Dirac distribution. (d) The electron and hole
densities in the conduction and valence bands, respectively, obtained by combining (b) and (c).

by the effective mass, which takes the effect of a periodic force into account. The effective
mass is also averaged over different directions to take anisotropy into account. Both gC

and gV have a parabolic shape, which is also illustrated in Fig. 6.5 (b).

The Fermi-Dirac distribution function is given by

f (E) =
1

1 + exp
(

E−EF
kBT

) , (6.3)

where kB is Boltzmann’s constant (kB = 1.38× 10−23 J/K) and EF is the so-called Fermi
energy. kBT is the thermal energy, at 300 K it is 0.0258 eV. The Fermi energy — also called
Fermi level — is the electrochemical potential of the electrons in a material and in this way
it represents the averaged energy of electrons in the material. The Fermi-Dirac distribution
function is illustrated in Fig. 6.5 (c). Figure 6.6 illustrates the Fermi-Dirac distribution at
different temperatures.

The carriers that contribute to charge transport are electrons in the conduction band
and holes in the valence band. The concentration of electrons in the conduction band and
the total concentration of holes in the valence band is obtained by multiplying the density
of states function with the distribution function and integrating across the whole energy
band, as illustrated in Fig. 6.5 (d).

n(E) = gC(E) f (E), (6.4a)

p(E) = gV(E) [1− f (E)] . (6.4b)

The total concentration of electrons and holes in the conduction band and valence band,
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Figure 6.6: The Fermi-Dirac distribution function. (a) For T = 0 K, all allowed states below the
Fermi level are occupied by two electrons. (b, c) At T > 0 K not all states below the Fermi level are
occupied and there are some states above the Fermi level that are occupied. (d) In an energy gap
between bands no electrons are present.

respectively, is then obtained via integration,

n =
∫ Etop

EC

n(E)dE, (6.5a)

p =
∫ EV

Ebottom

p(E)dE. (6.5b)

Substituting the density of states and the Fermi-Dirac distribution function into Eq. (6.5)
the resulting expressions for n and p are obtained after solving the equations. The full
derivation can be found for example in Reference [24].

n = NC exp

(

EF − EC

kBT

)

for EC − EF ≥ 3 kBT, (6.6a)

p = NV exp

(

EV − EF

kBT

)

for EF − EV ≥ 3 kBT, (6.6b)

where NC and NV are the effective densities of the conduction band states and the valence
band states, respectively. They are defined as

NC = 2

(

2πm∗nkBT

h2

)
3
2

and NV = 2

(

2πm∗pkBT

h2

)

3
2

(6.7)

For crystalline silicon, we have at 300 K

NC = 3.22× 1019 cm−3, (6.8a)

NV = 1.83× 1019 cm−3. (6.8b)

When the requirement that the Fermi level lies in the band gap more than 3 kBT from either
band edge is satisfied the semiconductor is referred to as a nondegenerate semiconductor.
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If an intrinsic semiconductor is in equilibrium, we have n = p = ni. By multiplying the
corresponding sides of Eqs. (6.6) we obtain

np = n2
i = NC NV exp

(

EV − EC

kBT

)

= NC NV exp

(

−
Eg

kBT

)

, (6.9)

which is independent of the position of the Fermi level and thus valid for doped semicon-
ductors as well. When we denote the position of the Fermi level in the intrinsic material
EFi we may write

ni = NC exp

(

EFi − EC

kBT

)

= NV exp

(

EV − EFi

kBT

)

. (6.10)

From Eq. (6.10) we can easily find the position of EFi to be

EFi =
EC + EV

2
+

kBT

2
ln

(

NV

NC

)

= EC −
Eg

2
+

kBT

2
ln

(

NV

NC

)

. (6.11)

The Fermi level EFi lies close to the midgap [(EC + EV)/2]; a slight shift is caused by the
difference in the densities of the valence and conduction band.

6.4.2 Doped semiconductors

It has been already mentioned in Section 6.3 that the concentrations of electrons and holes
in c-Si can be manipulated by doping. The concentration of electrons and holes is influ-
enced by the amount of the impurity atoms that substitute silicon atoms in the lattice.
Under the assumption that the semiconductor is uniformly doped and in equilibrium a
simple relationship between the carrier and dopant concentrations can be established. We
assume that at room temperature the dopant atoms are ionised. Inside a semiconductor
the local charge density is given by

ρ = q
(

p + N+
D − n− N−A

)

, (6.12)

where q is the elementary charge (q ≈ 1.602× 10−19 C). N+
D and N−A denote the density

of the ionised donor and acceptor atoms, respectively. As every ionised atom corresponds to
a free electron (hole), N+

D and N−A tell us the concentration of electrons and holes due to
doping, respectively.

Under equilibrium conditions, the local charge of the uniformly doped semiconductor
is zero, which means that the semiconductor is charge-neutral everywhere. We thus can
write:

p + N+
D − n− N−A = 0. (6.13)

As previously discussed, the thermal energy available at room temperature is sufficient to
ionise almost all the dopant atoms. We therefore may assume

N+
D ≈ ND and N−A ≈ NA, (6.14)

and hence
p + ND − n− NA = 0, (6.15)

which is the common form of the charge neutrality equation.
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Figure 6.7: A shift of the position of the Fermi energy in the band diagram and the introduction
of the allowed energy level into the bandgap due to the doping.

Let us now consider an n-type material. At room temperature almost all donor atoms
ND are ionised and donate an electron into the conduction band. Under the assumption
that NA = 0 , Eq. (6.15) becomes

p + ND − n = 0, (6.16)

Further, assuming that
ND ≈ N+

D ≈ n, (6.17)

we can expect that the concentration of holes is lower than that of electrons, and becomes
very low when ND becomes very large. From Eq. (6.9), we can calculate the concentration
of holes in the n-type material more accurately,

p =
n2

i

n
≈

n2
i

ND
� n. (6.18)

In case of a p-type material almost all acceptor atoms NA are ionised at room temper-
ature. Therefore, they accept an electron and leave a hole in the valence band. Under the
assumption that ND = 0 , Eq. (6.15) becomes

p− n− NA = 0. (6.19)

Further, when assuming that
NA ≈ N−A ≈ p, (6.20)

we can expect that the concentration of electrons is lower than that of holes. From Eq. (6.9),
we can calculate the concentration of electrons in the p-type material more accurately,

n =
n2

i

p
≈

n2
i

NA
� p. (6.21)

Inserting donor and acceptor atoms into the lattice of crystalline silicon introduces al-
lowed energy levels into the forbidden bandgap. For example, the fifth valence electron of
the P atom does not take part in forming a bond, is rather weakly bound to the atom and
is easily liberated from the P atom. The energy of the liberated electron lies in the CB. The
energy levels, which we denote ED, of the weakly-bound valence electrons of the donor
atoms have to be positioned close to the CB. Note that a dashed line represents the ED.
This means that an electron, which occupies the ED level, is localised in the vicinity of the
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donor atom. Similarly, the acceptor atoms introduce allowed energy levels EA close to the
VB.

Doping also influences the position of the Fermi energy. When we increase the elec-
trons concentration by increasing the donor concentration the Fermi energy will increase,
which is represented by bringing the Fermi energy closer to the CB in the band diagram.
In the p-type material the Fermi energy is moved closer to the VB. A change in the Fermi-
energy position and the introduction of the allowed energy level into the bandgap due to
the doping is illustrated Fig. 6.7.

The position of the Fermi level in an n-type semiconductor can be calculated with Eqs.
(6.6a); in a p-type semiconductor Eqs. (6.6b) and (6.20) can be used:

EC − EF = kBT ln

(

NC

ND

)

for n-type, (6.22a)

EF − EV = kBT ln

(

NV

NA

)

for p-type. (6.22b)

Example

This example demonstrates how much the concentration of electrons and holes can be manipulated
by doping. A c-Si wafer is uniformly doped with 1× 1017 cm−3 P atoms. P atoms act as donors and
therefore at room temperature the concentration of electrons is almost equal to the concentration of
donor atoms:

n = N+
D ≈ ND = 1017 cm−3.

The concentration of holes in the n-type material is calculated from Eq. (6.17),

p =
n2

i

n
=

(

1.5× 1010
)2

1017
= 2.25× 103 cm−3.

We notice that there is a difference of 14 orders of magnitude between n (1017 cm−3) and p (2.25×
103 cm−3). It is now obvious why electrons in n-type materials are called the majority carriers and
holes the minority carriers. We can calculate the change in the Fermi energy due to the doping. Let
us assume that the reference energy level is the bottom of the conduction band, EC = 0 eV. Using
Eq. (6.11) we calculate the Fermi energy in the intrinsic c-Si.

EFi = EC −
Eg

2
+

kBT

2
ln

(

NV

NC

)

= −
1.12

2
+

0.0258

2
ln

(

1.83× 1019

3.22× 1019

)

= −0.57 eV.

The Fermi energy in the n-type doped c-Si wafer is calculated from Eq. (6.6a)

EF = EC + kBT ln

(

n

NC

)

= 0.0258× ln

(

1017

3.22× 1019

)

= −0.15 eV.

We notice that the doping with P atoms has resulted in the shift of the Fermi energy towards the CB.
Note that when n > NC, EF > EC and the Fermi energy lies in the CB.


