
8
Semiconductor Junctions

Almost all solar cells contain junctions between (different) materials of different doping.
Since these junctions are crucial to the operation of the solar cell, we will discuss their
physics in this chapter.

A p-n junction fabricated in the same semiconductor material, such as c-Si, is an ex-
ample of an p-n homojunction. There are also other types of junctions: A p-n junction that is
formed by two chemically different semiconductors is called a p-n heterojunction. In a p-i-n
junctions, the region of the internal electric field is extended by inserting an intrinsic,i, layer
between the p-type and the n-type layers. The i-layer behaves like a capacitor; it stretches
the electric field formed by the p-n junction across itself. Another type of the junction is
between a metal and a semiconductor; this is called a MS junction. The Schottky barrier
formed at the metal-semiconductor interface is a typical example of the MS junction.

8.1 p-n homojunctions

8.1.1 Formation of a space-charge region in the p-n junction

Figure 8.1 shows schematically isolated pieces of a p-type and an n-type semiconductor
and their corresponding band diagrams. In both isolated pieces the charge neutrality is
maintained. In the n-type semiconductor the large concentration of negatively-charged
free electrons is compensated by positively-charged ionised donor atoms. In the p-type
semiconductor holes are the majority carriers and the positive charge of holes is com-
pensated by negatively-charged ionised acceptor atoms. For the isolated n-type semicon-
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Figure 8.1: Schematic representation of an isolated n-type and p-type semiconductor and corres-
ponding band diagrams.

ductor we can write

n = nn0 ≈ ND, (8.1a)

p = pn0 ≈ n2
i

/

ND . (8.1b)

For the isolated p-type semiconductor we have

p = pp0 ≈ NA, (8.2a)

n = np0 ≈ n2
i

/

NA . (8.2b)

When a p-type and an n-type semiconductor are brought together, a very large differ-
ence in electron concentration between n- and p-type regions causes a diffusion current
of electrons from the n-type material across the metallurgical junction into the p-type ma-
terial. The term “metallurgical junction” denotes the interface between the n- and p-type
regions. Similarly, the difference in hole concentration causes a diffusion current of holes
from the p- to the n-type material. Due to this diffusion process the region close to the
metallurgical junction becomes almost completely depleted of mobile charge carriers. The
gradual depletion of the charge carriers gives rise to a space charge created by the charge
of the ionised donor and acceptor atoms that is not compensated by the mobile charges
any more. This region of the space charge is called the space-charge region or depleted region
and is schematically illustrated in Fig. 8.2. Regions outside the depletion region, in which
the charge neutrality is conserved, are denoted as the quasi-neutral regions.
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Figure 8.2: Formation of a space-charge region, when n-type and p-type semiconductors are
brought together to form a junction. The coloured part represents the space-charge region.

The space charge around the metallurgical junction results in the formation of an in-
ternal electric field which forces the charge carriers to move in the opposite direction than
the concentration gradient. The diffusion currents continue to flow until the forces acting
on the charge carriers, namely the concentration gradient and the internal electrical field,
compensate each other. The driving force for the charge transport does not exist any more
and no net current flows through the p-n junction.

8.1.2 The p-n junction under equilibrium

The p-n junction represents a system of charged particles in diffusive equilibrium in which
the electrochemical potential is constant and independent of position. The electro-chemical
potential describes an average energy of electrons and is represented by the Fermi energy.
Figure 8.3 (a) shows the band diagrams of isolated n- and a p-type semiconductors. The
band diagrams are drawn such that the vacuum energy level Evac is aligned. This energy
level represents the energy just outside the atom, if an electron is elevated to Evac it leaves
the sphere of influence of the atom. Also the electron affinity χe is shown, which is defined
as the potential that an electron present in the conduction band requires to be elevated to
an energy level just outside the atom, i.e. Evac.

The band diagram of the p-n junction in equilibrium is shown in Figure 8.3 (b). Note,
that in the band diagram the Fermi energy is constant across the junction, not the vacuum
energy. As the Fermi energy denotes the “filling level” of electrons, this is the level that
is constant throughout the junction. To visualise this, we take a look at Fig. 8.4 (a), which
shows two tubes of different lengths that are partially filled with water. The filling level
is equivalent to the Fermi energy in a solid state material. The vacuum energy would be
the upper boundary of the tube; if the water was elevated above this level, it could leave
the tube. If the two tubes are connected as illustrated in Fig. 8.4 (b), the water level in both
tubes will be the same. However, the length of the tubes might be different; for leaving the
first tube, a different energy can be required than for leaving the second tube.

In addition to the Fermi energy being constant across the junction, the the band-edge
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Figure 8.3: (a) The energy band diagrams of an n- and a p-type material that are separated from
each other. (b) The energy-band diagram of the p-n junction under equilibrium. The electrostatic
potential profile (green curve) is also presented in the figure.

(a) (b)

Figure 8.4: (a) Two tubes of different length (upper boundary represents vacuum level) and
filling level (representing Fermi energy). (b) If the tubes are connected, the filling level will equalise
but the heights of the tube boundaries can be different.
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Figure 8.5: Concentrations profile of mobile charge carriers in a p-n junction under equilibrium.

energies EC and EV as well as the vacuum energy Evac must be continuous. Hence, the
bands get bended, which indicates the presence of an electric field in this region. Due to the
electric field a difference in the electrostatic potential is created between the boundaries of
the space-charge region. Across the depletion region the changes in the carrier concentra-
tion are compensated by changes in the electrostatic potential. The electrostatic-potential
profile ψ is also drawn in Fig. 8.3 (b).

The concentration profile of charge carriers in a p-n junction is schematically presented
in Fig. 8.5. In the quasi-neutral regions the concentration of electrons and holes is the same
as in the isolated doped semiconductors. In the space-charge region the concentrations of
majority charge carriers decrease very rapidly. This fact allows us to use the assumption
that the space-charge region is depleted of mobile charge carriers. This assumption means
that the charge of the mobile carriers represents a negligible contribution to the total space
charge in the depletion region. The space charge in this region is fully determined by the
ionised dopant atoms fixed in the lattice.

The presence of the internal electric field inside the p-n junction means that there is an
electrostatic potential difference, Vbi, across the space-charge region. We shall determine
a profile of the internal electric field and electrostatic potential in the p-n junction. First
we introduce an approximation, which simplifies the calculation of the electric field and
electrostatic-potential. This approximation (the depletion approximation) assumes that the
space-charge density, ρ, is zero in the quasi-neutral regions and it is fully determined by
the concentration of ionised dopants in the depletion region. In the depletion region of the
n-type semiconductor it is the concentration of positively charged donor atoms, ND, which
determines the space charge in this region. In the p-type semiconductor, the concentration
of negatively charged acceptor atoms, NA, determines the space charge in the depletion
region. This is illustrated in Fig. 8.6. Further, we assume that the p-n junction is a step
junction; it means that there is an abrupt change in doping at the metallurgical junction
and the doping concentration is uniform both in the p-type and the n-type semiconductors.

In Fig. 8.6, the position of the metallurgical junction is placed at zero, the width of
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Figure 8.6: (a) The space-charge density ρ(x), (b) the electric field ξ(x), and (c) the electrostatic
potential ψ(x) across the depletion region of a n-p junction under equilibrium.
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the space-charge region in the n-type material is denoted as `n and the width of the space-
charge region in the p-type material is denoted as `p. The space-charge density is described
by

ρ(x) = qND for −`n ≤ x ≤ 0, (8.3a)

ρ(x) = −qNA for 0 ≤ x ≤ `p, (8.3b)

where ND and NA is the concentration of donor and acceptor atoms, respectively. Out-
side the space-charge region the space-charge density is zero. The electric field which is
calculated from the Poisson’s equation, in one dimension can be written as

d2 ψ

dx2
= −

d ξ

dx
= −

ρ

εr ε0
, (8.4)

where ψ is the electrostatic potential, ξ is the electric field, ρ is the space-charge density,
εr is the semiconductor dielectric constant and ε0 is the vacuum permittivity. The vacuum
permittivity is = 8.854 · 10−14 F/cm and for crystalline silicon εr = 11.7. The electric
field profile can be found by integrating the space-charge density across the space-charge
region,

ξ =
1

εr ε0

∫

ρ dx. (8.5)

Substituting the space-charge density with Eqs. (8.3) and using the boundary condi-
tions

ξ (−`n) = ξ
(

`p

)

= 0, (8.6)

we obtain as solution for the electric field

ξ (x) =
q

εr ε0
ND (`n + x) for −`n ≤ x ≤ 0, (8.7a)

ξ (x) =
q

εr ε0
NA

(

`p − x
)

for 0 ≤ x ≤ `p. (8.7b)

At the metallurgical junction, x = 0, the electric field is continuous, which requires that
the following condition has to be fulfilled

NA`p = ND`n. (8.8)

Outside the space-charge region the material is electrically neutral and therefore the electric
field is zero there.

The profile of the electrostatic potential is calculated by integrating the electric field
throughout the space-charge region and applying the boundary conditions,

ψ = −
∫

ξdx. (8.9)

We define the zero electrostatic potential level at the outside edge of the p-type semicon-
ductor. Since we assume no potential drop across the quasi-neutral region the electrostatic
potential at the boundary of the space-charge region in the p-type material is also zero,

ψ(`p) = 0. (8.10)
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Using Eqs. (8.7) for describing the electric field in the n- and p-doped regions of the space-
charge region, and taking into account that at the metallurgical junction the electrostatic
potential is continuous, we can write the solution for the electrostatic potential as

ψ (x) =−
q

2εr ε0
ND (x+ `n)

2

+
q

2εr ε0

(

ND `
2
n + NA `

2
p

)











for − `n ≤ x ≤ 0, (8.11a)

ψ (x) =
q

2εr ε0
NA

(

x− `p

)2
for 0 ≤ x ≤ `p. (8.11b)

Under equilibrium a difference in electrostatic potential, Vbi, develops across the space-
charge region. The electrostatic potential difference across the p-n junction is an important
characteristic of the junction and is denoted as the built-in voltage or diffusion potential of
the p-n junction. We can calculate Vbi as the difference between the electrostatic potential
at the edges of the space-charge region,

Vbi = ψ (−`n)− ψ
(

`p

)

= ψ (−`n) . (8.12)

Using Eq. (8.11a) we obtain for the built-in voltage

Vbi =
q

2εr ε0

(

ND `
2
n + NA `

2
p

)

(8.13)

The built-in potential Vbi can also be determined with using the energy-band diagram
presented in Fig. 8.3 (b).

qVbi = EG − E1 − E2. (8.14)

Using Eqs. (6.1) and (6.22), which determine the band gap, and the positions of the
Fermi energy in the n- and p-type semiconductor, respectively,

EG = EC − EV ,

E1 = EC − EF = kBT ln (NC/ND) ,

E2 = EF − EV = kBT ln (NV/NA) .

We can write

qVbi = EG − kBT ln

(

NV

NA

)

− kBT ln

(

NC

ND

)

= EG − kBT ln

(

NV NC

NA ND

)

. (8.15)

Using the relationship between the intrinsic concentration, ni and the band gap, EG [see
Eq. (6.9)],

n2
i = NC NV exp

[

−
EG
kBT

]

,

we can rewrite Eq. (8.15) and obtain

Vbi =
kBT

q
ln

(

NA ND

n2
i

)

(8.16)
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This equation allows us to determine the built-in potential of a p-n junction from the stand-
ard semiconductor parameters, such as doping concentrations and the intrinsic carrier con-
centration.

We can calculate the width of the space charge region of the p-n junction in the thermal
equilibrium starting from Eq. (8.13). Using Eq. (8.8), either `n or `p can be eliminated from
Eq. (8.13), resulting in expressions for `n and `p respectively,

`n =

√

2εrε0Vbi

q

NA

ND

(

1

NA + ND

)

, (8.17a)

`p =

√

2εrε0Vbi

q

ND

NA

(

1

NA + ND

)

. (8.17b)

The total space-charge width, W, is the sum of the partial space-charge widths in the n-
and p-type semiconductors. Using Eq. (8.17) we find

W = `n + `p =

√

2εr ε0

q
Vbi

(

1

NA
+

1

ND

)

. (8.18)

The space-charge region is not uniformly distributed in the n- and p- regions. The
widths of the space-charge region in the n- and p-type semiconductor are determined by
the doping concentrations as illustrated by Eqs. (8.17). Knowing the expressions for `n

and `p we can determine the maximum value of the internal electric field, which is at the
metallurgical junction. By substituting `p from expressed by Eq. (8.17b) into Eq. (8.7b) we
obtain the expression for the maximum value of the internal electric field,

ξmax =

√

2q

εr ε0
Vbi

(

NA ND

NA + ND

)

. (8.19)

Example

A crystalline silicon wafer is doped with 1016 acceptor atoms per cubic centimetre. A 1 micrometer
thick emitter layer is formed at the surface of the wafer with a uniform concentration of 1018 donors
per cubic centimetre. Assume a step p-n junction and that all doping atoms are ionised. The intrinsic
carrier concentration in silicon at 300 K is 1.5 · 1010 cm−3.

Let us calculate the electron and hole concentrations in the p- and n-type quasi-neutral regions at
thermal equilibrium. We shall use Eqs. (8.1) and (8.2) to calculate the charge carrier concentrations.

P-type region: p = pp0 ≈ NA = 1016 cm−3.

n = np0 = n2
i

/

pp0 =
(

1.5 · 1010
)2

/

1016 = 2.25 · 104 cm−3

N-type region: n = nn0 ≈ NA = 1018 cm−3.

p = pn0 = n2
i

/

nn0 =
(

1.5 · 1010
)2

/

1018 = 2.25 · 102 cm−3

We can calculate the position of the Fermi energy in the quasi-neutral n-type and p-type regions,
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respectively, using Eq. (6.22a). We assume that the reference energy level is the bottom of the con-
duction band, EC = 0 eV.

N-type region: EF − EC = −kBT ln (NC/n) = −0.0258 ln
(

3.32 · 1019
/

1018
)

= −0.09 eV.

P-type region: EF − EC = −kBT ln (NC/n) = −0.0258 ln
(

3.32 · 1019
/

2.24 · 104
)

= −0.90 eV.

The minus sign tells us that the Fermi energy is positioned below the conduction band.
The built-in voltage across the p-n junction is calculated using Eq. (8.16),

Vbi =
kBT

q
ln

(

NA ND

n2
i

)

= 0.0258 V

[

1016 1018

(

1.5 · 1010
)2

]

= 0.81 V.

The width of the depletion region is calculated from Eq. (8.18),

W =

√

2εr ε0

q
Vbi

(

1

NA
+

1

ND

)

=

√

2 · 11.7 · 8.854 · 10−14

1.602 · 10−19
· 0.81

(

1

1016
+

1

1018

)

= 3.25 · 10−5 cm = 0.325 µm.

A typical thickness of c-Si wafers is 300 µm. The depletion region is 0.3 µm which represents 0.1% of
the wafer thickness. It is important to realise that almost the whole bulk of the wafer is a quasi-neutral
region without an internal electrical field.

The maximum electric field is at the metallurgical junction and is calculated from Eq. (8.19).

ξmax =

√

2q

εr ε0
Vbi

(

NA ND

NA + ND

)

=
2 · 1.602 · 10−19

11.7 · 8.854 · 10−14
· 0.81

(

1016 1018

1016 + 1018

)

= 5 · 104 V cm−1.

8.1.3 The p-n junction under applied voltage

When an external voltage, Va, is applied to a p-n junction the potential difference between
the n- and p-type regions will change and the electrostatic potential across the space-charge
region will become (Vbi − Va). Remember that under equilibrium the built-in potential is
negative in the p-type region with respect to the n-type region. When the applied external
voltage is negative with respect to the potential of the p-type region, the applied voltage
will increase the potential difference across the p-n junction. We refer to this situation as
p-n junction under reverse-bias voltage. The potential barrier across the junction is increased
under reverse-bias voltage, which results in a wider space-charge region.

Figure 8.7 (a) shows the band diagram of the p-n junction under reverse-biased voltage.
Under external voltage the p-n junction is not under equilibrium any more and the con-
centrations of electrons and holes are described by the quasi-Fermi energy for electrons,
EFn, and the quasi-Fermi energy for holes, EFp, respectively. When the applied external
voltage is positive with respect to the potential of the p-type region, the applied voltage
will decrease the potential difference across the p-n junction. We refer to this situation
as p-n junction under forward-bias voltage. The band diagram of the p-n junction under
forward-biased voltage is presented in Fig. 8.7 (b). The potential barrier across the junction
is decreased under forward-bias voltage and the space charge region becomes narrower.
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Figure 8.7: Energy band diagram and electrostatic-potential (in green) of a p-n junction under
(a) reverse bias and (b) forward bias conditions.

The balance between the forces responsible for diffusion (concentration gradient) and drift
(electric field) is disturbed. Lowering the electrostatic potential barrier leads to a higher
concentration of minority carriers at the edges of the space-charge region compared to
the situation in equilibrium. This process is referred to as minority-carrier injection. This
gradient in concentration causes the diffusion of the minority carriers from the edge into
the bulk of the quasi-neutral region.

The diffusion of minority carriers into the quasi-neutral region causes a so-called re-
combination current density, Jrec, since the diffusing minority carriers recombine with the
majority carriers in the bulk. The recombination current is compensated by the so-called
thermal generation current, Jgen, which is caused by the drift of minority carriers, which
are present in the corresponding doped regions (electrons in the p-type region and holes
in the n-type region), across the junction. Both, the recombination and generation current
densities have contributions from electrons and holes. When no voltage is applied to the
p-n junction, the situation inside the junction can be viewed as the balance between the
recombination and generation current densities,

J = Jrec − Jgen = 0 for Va = 0 V. (8.20)

It is assumed that when a moderate forward-bias voltage is applied to the junction the
recombination current density increases with the Boltzmann factor exp(eVa/kBT),

Jrec (Va) = Jrec (Va = 0) exp

(

qVa
kBT

)

. (8.21)

This assumption is called the Boltzmann approximation.
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The generation current density, on the other hand, is almost independent of the po-
tential barrier across the junction and is determined by the availability of the thermally-
generated minority carriers in the doped regions,

Jgen (Va) ≈ Jgen (Va = 0) . (8.22)

The external net-current density can be expressed as

J (Va) = Jrec (Va) − Jgen (Va)

= J0

[

exp

(

qVa
kBT

)

− 1

]

,
(8.23)

where J0 is the saturation current density of the p-n junction, given by

J0 = Jgen (Va = 0) . (8.24)

Equation (8.23) is known as the Shockley equation that describes the current-voltage be-
haviour of an ideal p-n diode. It is a fundamental equation for microelectronics device
physics. The saturation current density is also known as dark current density; its detailed
derivation for the p-n junction is carried out in Appendix B.1. The saturation-current dens-
ity is given by

J0 = q n2
i

(

DN

LN NA
+

DP

LP ND

)

. (8.25)

The saturation-current density depends in a complex way on the fundamental semi-
conductor parameters. Ideally the saturation-current density should be as low as possible
and this requires an optimal and balanced design of the p-type and n-type semiconductor
properties. For example, an increase in the doping concentration decreases the diffusion
length of the minority carriers, which means that the optimal product of these two quant-
ities requires a delicate balance between these two properties.

The recombination of the majority carriers due to the diffusion of the injected minority
carriers into the bulk of the quasi-neutral regions results in a lowering of the concentration
of the majority carriers compared to the one under equilibrium. The drop in the concen-
tration of the majority carriers is balanced by the flow of the majority carriers from the
electrodes into the bulk. In this way the net current flows through the p-n junction un-
der forward-bias voltage. For high reverse-bias voltage, the Boltzmann factor in Eq. (8.23)
becomes very small and can be neglected. The net current density is given by

J(Va) = −J0, (8.26)

and represents the flux of thermally generated minority carriers across the junction. The
current density-voltage (J-V) characteristic of an ideal p-n junction is schematically shown
in Fig. 8.8.

8.1.4 The p-n junction under illumination

When a p-n junction is illuminated, additional electron-hole pairs are generated in the
semiconductor. The concentration of minority carriers (electrons in the p-type region and
holes in the n-type region) strongly increases, leading to the flow of the minority carriers
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Figure 8.8: J-V characteristic of a p-n junction; (a) linear plot and (b) semi-logarithmic plot.

across the depletion region into the quasi-neutral regions. Electrons flow from the p-type
into the n-type region and holes from the n-type into the p-type region. The flow of the
photo-generated carriers causes the so-called photo-generation current density, Jph, which
adds to the thermal-generation current, Jgen. When no external electrical contact between
the n-type and the p-type regions is established, the junction is in open-circuit condition.
Hence, the current resulting from the flux of photo-generated and thermally-generated
carriers has to be balanced by the opposite recombination current. The recombination cur-
rent will increase through lowering of the electrostatic potential barrier across the depletion
region.

The band diagram of the illuminated p-n junction under open-circuit condition is presen-
ted in Fig. 8.9 (a). As we have seen in Section 7.6, under non-equilibrium the Fermi level
is replaced by quasi-Fermi levels that are different for electrons and holes and denote
their electrochemical potential. Under open-circuit condition, the quasi-Fermi level of elec-
trons, denoted by EFn, is higher than the quasi-Fermi level of holes (denoted by EFp) by
an amount of qVoc. This means that a voltmeter will measure a voltage difference of Voc

between the contacts of the p-n junction. We refer to Voc as the open-circuit voltage.

The bands in the quasi-neutral regions (i.e. outside the depletion region) are flat. Under
the assumption that the charge density in each of the regions is homogeneous, the bands
follow a parabolic shape in the depletion region. In this case there is generation anywhere
in the device. Under open circuit condition, the external current density is zero. So we
have

Jn = Jn, drift + Jn, diff = qµnnE+ qDn
dn

dx
= qµnn

(

1

q

dEC
dx

)

+ kBTµn
dn

dx
, (8.27a)

Jp = Jp, drift + Jp, diff = qµppE− qDn
dp

dx
= qµpp

(

1

q

dEV
dx

)

− kBTµp
dp

dx
. (8.27b)

The carrier densities are given by:

n = NC exp

(

−
EC − EFn

kBT

)

and p = NV exp

(

−
EFp − EV

kBT

)

. (8.28)
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Figure 8.9: Energy band diagram and electrostatic-potential (in green) of an illuminated p-n
junction under the (a) open-circuit and (b) short-circuit conditions.

So we find for the derivatives

dn

dx
= −

n

kBT

(

dEC
dx

−
dEFn

dx

)

and
dp

dx
=

p

kBT

(

dEV
dx

−
dEFp

dx

)

. (8.29)

We then find for each current component

Jn = qµnn

(

1

q

dEC
dx

)

+ kBTµn
dn

dx
= µnn

dEFn
dx

, (8.30a)

Jp = qµpp

(

1

q

dEV
dx

)

− kBTµp
dp

dx
= µpn

dEFp

dx
. (8.30b)

Hence, the total current is given by

J = Jn + Jp = µnn
dEFn

dx
+ µpn

dEFp

dx
= 0. (8.31)

Note that the last step implies that the current density at V = Voc is zero. The current
density can only be zero if

dEFn
dx

≡
dEFp

dx
≡ 0, (8.32)

which implies that the quasi-Fermi levels are horizontal in the entire band diagram of the
solar cell.

Figure 8.9 (b) shows the band diagram of the short-circuited p-n junction. Under this
situation, the photo-generated current will also flow through the external circuit. Under
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the short-circuit condition the electrostatic-potential barrier is not changed, but from a
strong variation of the quasi-Fermi levels inside the depletion region one can determine
that the current is flowing inside the semiconductor.

When a load is connected between the electrodes of the illuminated p-n junction, only a
fraction of the photo-generated current will flow through the external circuit. The electro-
chemical potential difference between the n-type and p-type regions will be lowered by a
voltage drop over the load. This in turn lowers the electrostatic potential over the deple-
tion region which results in an increase of the recombination current. In the superposition
approximation, the net current flowing through the load is determined as the sum of the
photo- and thermal generation currents and the recombination current. The voltage drop
at the load can be simulated by applying a forward-bias voltage to the junction, therefore
Eq. (8.23), which describes the behaviour of the junction under applied voltage, is included
to describe the net current of the illuminated p-n junction,

J (Va) = Jrec (Va) − Jgen (Va)− Jph

= J0

[

exp

(

qVa
kBT

)

− 1

]

− Jph.
(8.33)

Both the dark and illuminated J-V characteristics of the p-n junction are represented in
Fig. 8.10. Note that in the figure the superposition principle is reflected. The illuminated
J-V characteristic of the p-n junction is the same as the dark J-V characteristic, but it is
shifted down by the photo-generated current density Jph. The detailed derivation of the
photo-generated current density of the p-n junction is carried out in Appendix B.2. Under
a uniform generation rate, G, its value is

Jph = qG (LN +W + LP) , (8.34)

where LN and LP are the minority-carrier-diffusion length for electrons and holes, respect-
ively, and W is the width of the depletion region. It means that only carriers generated in
the depletion region and in the regions up to the minority-carrier-diffusion length from the
depletion region can contribute to the photo-generated current. When designing the thick-
ness of a solar cell, Eq. (8.34) must be considered. The thickness of the absorber should
not be thicker than the region from which the carriers contribute to the photo-generated
current.

8.2 Heterojunctions

In the previous sections we discussed the physics of junctions between an n-doped and a
p-doped semiconductor of the same material. In these junctions, that are called homojunc-
tions, the bandgap and the electron affinity are the same at both sides of the junction. Of
course, junctions between different materials can also be made. These junctions are called
heterojunctions. Heterojunctions are very important for solar cells; in fact, as of 2014, the
best solar cells based on crystalline silicon have heterojunctions of crystalline and amorph-
ous silicon, as we will see in Chapter 12. In this section we will look at the most important
features of heterojunctions.

We can distinguish between four types of heterojunctions: n-P junctions, p-N junctions,
n-N junctions, and p-P heterojunctions, where the lower-case letter denotes the material


