Solution set 6: Quantum measurement

1) For the circuit with the cnot, we find

- After the cnot, the joint state of qubit and meter is $a|0\rangle|0\rangle_{M}+b|1\rangle|1\rangle_{M}$.
- $P(0)=|a|^{2}$ and $P(1)=|b|^{2}$.
- The state of the qubit after projection of the meter is $|0\rangle$ for outcome 0 and $|1\rangle$ for outcome 1 .
- Since the qubit is entangled with the meter, measurement of the meter indirectly measures the qubit. The POVM operators that describe this indirect qubit measurement are

$$
E_{0}=|0\rangle\langle 0|=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad E_{1}=|1\rangle\langle 1|=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Indeed, we can verify that $\langle\psi| E_{0}|\psi\rangle=\left(a^{*}\langle 0|+b^{*}\langle 1|\right)|0\rangle\langle 0|(a|0\rangle+b|1\rangle)=|a|^{2}=P(0)$, and similarly $\langle\psi| E_{0}|\psi\rangle=|b|^{2}=P(1)$. Also $E_{0}+E_{1}=I$, so the completeness condition is satisfied.

- The measurement operators M_{m} that describe the action on the qubit are

$$
M_{0}=|0\rangle\langle 0|=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad M_{1}=|1\rangle\langle 1|=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

We have $M_{0}^{\dagger} M_{0}=E_{0}$, as should be the case (and furthermore $M_{0}=E_{0}$ in this case), so $\langle\psi| M_{0}^{\dagger} M_{0}|\psi\rangle=\langle\psi| E_{0}|\psi\rangle=P(0)$, and similarly for outcome 1. Furthermore, the postmeasurement state for outcome 0 is given by $M_{0}|\psi\rangle / \sqrt{P(0)}=|0\rangle\langle 0|(a|0\rangle+b|1\rangle) /|a|=$ $a|0\rangle /|a|$, which is what we had expected (up to an irrelevant overall phase shift). Similarly, $M_{1}|\psi\rangle / \sqrt{P(1)}=b|1\rangle /|b|$.

- Since $M_{i} M_{j}=\delta_{i j} E_{i}$, this is indeed a projective measurement of the qubit.

2) For the circuit with the controlled- $\sqrt{\text { NOT, }}$, we obtain

- The joint state after the controlled- $\sqrt{\text { NOT }}$ is

$$
a|0\rangle|0\rangle_{M}+b \sqrt{\frac{-i}{2}}|1\rangle(|0\rangle+i|1\rangle)_{M}=\left(a|0\rangle+\sqrt{\frac{-i}{2}} b|1\rangle\right)|0\rangle_{M}+i \sqrt{\frac{-i}{2}} b|1\rangle|1\rangle_{M}
$$

- $P(0)=|a|^{2}+\frac{|b|^{2}}{2}$ and $P(1)=\frac{|b|^{2}}{2}$.
- The state of the qubit after projection of the meter is

$$
\frac{a|0\rangle+\sqrt{\frac{-i}{2}} b|1\rangle}{\sqrt{|a|^{2}+\frac{|b|^{2}}{2}}} \text { for outcome } 0 \text { and } \quad|1\rangle \quad \text { for outcome } 1 .
$$

- The meter is still partly entangled with the qubit, and therefore measurement of the meter again constitutes an indirect (but now partial) measurement of the qubit. From $P(0)$ and $P(1)$, we find the POVM operators describing this indirect qubit measurement:

$$
E_{0}=|0\rangle\langle 0|+\frac{|1\rangle\langle 1|}{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right] \quad \text { and } \quad E_{1}=\frac{|1\rangle\langle 1|}{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

Indeed $E_{0}+E_{1}=I$.

- From the post-measurement state obtained above, we find for the measurement operators

$$
M_{0}=\left[\begin{array}{cc}
1 & 0 \\
0 & \sqrt{\frac{-i}{2}}
\end{array}\right] \quad \text { and } \quad M_{1}=\left[\begin{array}{cc}
0 & 0 \\
0 & \sqrt{\frac{i}{2}}
\end{array}\right] .
$$

We verify that here too $M_{0}^{\dagger} M_{0}=E_{0}$ and $M_{1}^{\dagger} M_{1}=E_{1}$, so the operators give the correct probabilities for the respective measurement outcomes. Furthermore, the M_{m} also give the post-measurement states correctly:

$$
\begin{aligned}
& M_{0}|\psi\rangle / \sqrt{P(0)}=\frac{1}{\sqrt{|a|^{2}+\frac{|b|^{2}}{2}}}\left[\begin{array}{cc}
1 & 0 \\
0 & \sqrt{\frac{-i}{2}}
\end{array}\right]\binom{a}{b}=\frac{1}{\sqrt{|a|^{2}+\frac{|b|^{2}}{2}}}\binom{a}{\sqrt{\frac{-i}{2}} b}=\frac{a|0\rangle+\sqrt{\frac{-i}{2}} b|1\rangle}{\sqrt{|a|^{2}+\frac{|b|^{2}}{2}}} \\
& M_{1}|\psi\rangle / \sqrt{P(1)}=\frac{1}{\sqrt{\frac{|b|^{2}}{2}}}\left[\begin{array}{cc}
0 & 0 \\
0 & \sqrt{\frac{i}{2}}
\end{array}\right]\binom{a}{b}=\frac{1}{\sqrt{\frac{|b|^{2}}{2}}}\binom{0}{\sqrt{\frac{i}{2}} b}=\frac{1}{\sqrt{\frac{b| |^{2}}{2}}} \sqrt{\frac{i}{2}} b|1\rangle=\sqrt{i} b|1\rangle /|b|
\end{aligned}
$$

- This is not a projective measurement, because $M_{0}^{\dagger} M_{1} \neq 0$ (the measurement operators are not orthonormal) and $M_{0}^{\dagger} M_{0} \neq M_{0}$.

