Solution set 7: Shor's factoring algorithm

1) "Classical" factoring via period finding.

- For $a=13$, we have

$$
\begin{aligned}
& 13^{0} \bmod 15=1 \bmod 15=1 \\
& 13^{1} \bmod 15=13 \bmod 15=13 \\
& 13^{2} \bmod 15=169 \bmod 15=4 \\
& 13^{3} \bmod 15=2197 \bmod 15=7
\end{aligned}
$$

or, more easily: $13^{3} \bmod 15=\left(\left(13^{2} \bmod 15\right) \times 13\right) \bmod 15=4 \times 13 \bmod 15=52 \bmod 15=7$.

$$
\begin{aligned}
& 13^{4} \bmod 15=7 \times 13 \bmod 15=91 \bmod 15=1 \\
& 13^{5} \bmod 15=1 \times 13 \bmod 15=13 \bmod 15=13
\end{aligned}
$$

The consecutive outputs of $13^{x} \bmod 15$ are thus $1,13,4,7,1,13,4,7, \ldots$, so the period of $13^{x} \bmod 15$ is $r=4$.

- We compute $\operatorname{gcd}\left(13^{4 / 2}+1,15\right)=\operatorname{gcd}(170,15)=5$ and $\operatorname{gcd}\left(13^{4 / 2}-1,15\right)=\operatorname{gcd}(168,15)=$ 3. Those are indeed the prime factors of fifteen.

As a second example, for $a=11$, modular exponentiation gives $1,11,1,11, \ldots$ so now the period is $r=2$. And indeed, $\operatorname{gcd}\left(11^{2 / 2}+1,15\right)=\operatorname{gcd}(12,15)=3$ and $\operatorname{gcd}\left(11^{2 / 2}-1,15\right)=$ $\operatorname{gcd}(10,15)=5$.
2) Quantum factoring of 15

- Initialization $\mapsto|0\rangle|0\rangle$
- Hadamard $\mapsto(|0\rangle+|1\rangle+|2\rangle+|3\rangle+|4\rangle+|5\rangle+|6\rangle+|7\rangle)|0\rangle$
- Controlled modular exponentiation $\mapsto|0\rangle|1\rangle+|1\rangle|13\rangle+|2\rangle|4\rangle+|3\rangle|7\rangle+|4\rangle|1\rangle+|5\rangle|13\rangle+|6\rangle|4\rangle+|7\rangle|7\rangle$
- Rewrite $\mapsto(|0\rangle+|4\rangle)|1\rangle+(|1\rangle+|5\rangle)|13\rangle+(|2\rangle+|6\rangle)|4\rangle+(|3\rangle+|7\rangle)|7\rangle$

The period in the amplitudes of the first register is $r=4$, but we could never determine r from measuring the first register, as all eight terms $|0\rangle$ through $|7\rangle$ carry equal weight and we randomly get one of them if we measure. Measurement of the first register returns one of the possible outcomes of $13^{x} \bmod 15$, for some random value of x. This isn't useful either - we might as well classically evaluate $13^{x} \bmod 15$ for some random x.

- Quantum Fourier Transform

$$
\begin{aligned}
& \mapsto(|0\rangle+|2\rangle+|4\rangle+|6\rangle)|1\rangle+(|0\rangle-i|2\rangle-|4\rangle+i|6\rangle)|13\rangle+ \\
& \quad(|0\rangle-|2\rangle+|4\rangle-|6\rangle)|4\rangle+(|0\rangle+i|2\rangle-|4\rangle-i|6\rangle)|7\rangle
\end{aligned}
$$

- Measurement of the first register gives $0,2,4$ or 6 . From the way the algorithm is constructed, these are integer multiples of the period, inverted with respect to the register size of three qubits, i.e. an integer times $2^{3} / r$. It is possible to extract r from the measurement outcome (you may have to repeat the algorithm a few times), but the first register is a bit small to really appreciate how this works.

If the first register had 8 qubits, measurement of the final state would give $0,64,128$ or 192 (the integer multiples of $2^{8} / r=64$. Now it's possible to find r, for instance via the continued fractions algorithm, which gives

$$
\begin{array}{r}
64 / 256=1 / 4 \mapsto r=4 \text { (correct) } \\
128 / 256=1 / 2 \mapsto r=2 \text { (mistake) } \\
192 / 256=3 / 4 \mapsto r=4 \text { (correct) }
\end{array}
$$

Alternative, one can repeat the measurement a few times, and take the greatest common denominator between the measurement outcomes, which gives 64 . We know this number is the inverted period, $2^{8} / r$, so we deduce that $r=4$. From $r=4$, we proceed as under 1).

