Solution set 7: Shor’s factoring algorithm

1) ”Classical” factoring via period finding.

e For a = 13, we have

13%mod15
13'mod15
13%mod15
13*mod15
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lmodlb =1
13mod15 =13
169mod15 = 4

2197modl5 =7

or, more easily: 13>mod15 = ((13%mod15) x 13)mod15 = 4 x 13mod15 = 52mod15 = 7.

13*mod15 = 7 x 13mod15 = 91mod15 = 1
13°mod15 = 1 x 13mod15 = 13mod15 = 13

The consecutive outputs of 13*mod15 are thus 1,13,4,7,1,13,4,7, ..., so the period of

13*mod15 is r = 4.

e We compute ged(13%/2+1, 15) = ged(170,15) = 5 and ged (1342 —-1,15) = ged (168, 15) =
3. Those are indeed the prime factors of fifteen.

As a second example, for a = 11, modular exponentiation gives 1,11,1,11,... so now the
period is r = 2. And indeed, ged(11%/2 +1,15) = ged(12,15) = 3 and ged(11%/2 — 1,15) =

ged(10,15) = 5.

2) Quantum factoring of 15

e Initialization — |0)|0)

e Hadamard — (|0) + [1) + |2) +|3) + [4) + |5) + |6) + [7))|0)

e Controlled modular exponentiation

= [0)[1) + [[13) + [2)[4) + [3)[7) + [4)[1) + [5)[13) + [6)[4) + [7)|7)

e Rewrite — (|0) +[4))[1) + (1) +[5))[13) 4 (12) + 16))|4) + (3) + |7)[7)
The period in the amplitudes of the first register is r = 4, but we could never determine
r from measuring the first register, as all eight terms |0) through |7) carry equal weight
and we randomly get one of them if we measure. Measurement of the first register
returns one of the possible outcomes of 13*mod15, for some random value of x. This
isn’t useful either — we might as well classically evaluate 13*mod15 for some random

x.



e Quantum Fourier Transform
= (10) +[2) + [4) +16))[1) + (|0) — i[2) — [4) +i[6))[13)+
(10) = 12) +[4) = 16))[4) + (|0) + i[2) — [4) —i]6))|7)

e Measurement of the first register gives 0,2,4 or 6. From the way the algorithm is
constructed, these are integer multiples of the period, inverted with respect to the
register size of three qubits, i.e. an integer times 23/r. It is possible to extract r from
the measurement outcome (you may have to repeat the algorithm a few times), but the
first register is a bit small to really appreciate how this works.

If the first register had 8 qubits, measurement of the final state would give 0, 64,128 or
192 (the integer multiples of 28/r = 64. Now it’s possible to find r, for instance via the
continued fractions algorithm, which gives

64/256 = 1/4 +— r = 4(correct)
128/256 = 1/2 + r = 2(mistake)
192/256 = 3/4 — r = 4(correct)
Alternative, one can repeat the measurement a few times, and take the greatest common

denominator between the measurement outcomes, which gives 64. We know this number is
the inverted period, 28 /7, so we deduce that r = 4. From r = 4, we proceed as under 1).



