Delft Applied Mechanics: Statics

AE1-914-I

January 27, 2006, 9:00–12:00

ANSWER FORM

Name:

_____ Section below is not to be filled in by the student _____

Marks:

January 27, 2006	Name:				
Exam AE1-914-I	Student number:				

Problem 1 (Weight 1.0, approx. 20 min.)

Question a

What is the essential difference between a kinematically determinate and a kinematically indeterminate structure?

Question b

What is the essential difference between a statically determinate and a statically indeterminate structure?

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

For 2-dimensional trusses a fast method can be used to determine the degree of determinacy of a structure:

s = 2k - 3

Question c

Explain what this formula means and also explain how it can be used to determine the degree of kinematical and statical (in)determinacy for trusses in general.

_____ _____ _____ _____

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Question d

Evaluate the degree of kinematical and statical (in)determinacy of the truss below.

Exam AE1-914-I	Student number:	
January 27, 2006	Name:	

Problem 2 (Weight 2.0, approx. 35 min.)

A pontoon is anchored by a cable in a fjord which is 30 m deep. The cable is being weighted down by two concrete blocks of 1200 N each. It is assumed that the cable will not stretch under the given loads. In the situation below a horizontal force F due to the wind load is acting on the pontoon.

NOTE: The vertical position h of point D is unknown!

Question a

Calculate the magnitude of the force F due to the wind load acting on the pontoon. Draw the force that the cable exercises on the pontoon in the correct direction.

Exam AE1-914-I	Student number:					
January 27, 2006	Name:					
			 •••••	 •••••	 	•••••
		•••••	 	 	 	•••••
			 •••••	 •••••	 	

Exam AE1-914-I	Student number:			
January 27, 2006	Name:			
Question b				-
Determine the vertical position h	of point D.			

Question c

Determine the maximum force in the cable and indicate where this occurs.

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Problem 3 (Weight 2.5, approx. 45 min.)

The structure below consists of parts AS and SBCDE which are connected by a hinge in S. The structure is loaded by a couple of 20 kNm halfway between S and B and a uniform distributed load of 10 kN/m on part DE. The structure is simply supported in A and in B.

Question a

Calculate the reactions and draw them in the figure as they act on the structure in reality.

Exam AE1-914-I	Student number:					
January 27, 2006	Name:					
			 •••••	 •••••	 	•••••
		•••••	 	 	 	•••••
			 •••••	 •••••	 	

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Question b

Draw the moment diagram (M-diagram) of the entire structure with the appropriate deformation signs. Mention all relevant values and draw the tangents when necessary.

Question c

Draw the shear force diagram (V-diagram) of the entire structure with the appropriate deformation signs. Mention all relevant values.

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Question d

Draw the normal force diagram (N-diagram) of the entire structure with the appropriate signs for tension and compression. Mention all relevant values.

Question e

Isolate joint C and draw all forces (and moments) as they act on the joint.

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Problem 4 (Weight 2.5, approx. 45 min.)

As indicated in the figure, the truss is loaded by three forces of 10 kN each.

Question a

Identify the zero-force members and indicate them in the figure.

Question b

Calculate the reactions in A, B, and C and draw them in the figure as they act on the structure in reality.

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				
		 • • • • • • •	 	 	

Question c

Calculate all the forces in the members with the correct sign for tension and compression. Write all answers in the table at the end of this question.

Exam AE1-914-I	Student number:					
January 27, 2006	Name:					
			• • • • • •	 	 	
			•••••	 	 	
		•••••	•••••	 	 	
			•••••	 	 	

Exam AE1-914-I	Student number:]
January 27, 2006	Name:	_

$F_{\rm AD}$	$F_{\rm BE}$	$F_{\rm CE}$	$F_{\rm CG}$	$F_{\rm DE}$	F_{DJ}	$F_{\rm DH}$
$F_{\rm EG}$	$F_{ m EJ}$	$F_{ m HJ}$	$F_{ m HK}$	$F_{ m JK}$	$F_{ m JL}$	$F_{ m KL}$

Question d

Draw the force polygon for the equilibrium of point D.

					D						
	:	:	: :	: :							
									Ę	5 kN	

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Problem 5 (Weight 2.0, approx. 35 min.)

The structure below consists of beam OAB with arms AC and AD attached perpendicularly. The weight of the structure may be neglected. Point O is a ball- and socket joint. The ball that is attached to point B slides over a frictionless slope. The angle α of the slope with respect to the x-axis is equal to $\tan \alpha = 3/4$. The structure is kept in equilibrium by means of the cables AE and CG which are parallel to the x-axis. A mass with a weight of W = 4 kN is attached to point D.

Question a

Calculate the reaction(s) in B. Draw them in the figure as they act on the structure in reality.

Exam AE1-914-I	Student number:				
January 27, 2006	Name:				

Question b

Calculate the forces in cables AE and CG.

Exam AE1-914-I	Student number:							
January 27, 2006	Name:							
Question c								
Calculate the reaction(s) in the ball- and act on the structure in reality.	d socket joint O. Di	aw t	hem	in t	he f	igure	e as '	they
		•••••						
		•••••						