Delft Applied Mechanics: Statics

AE1-914-I

January 27, 2006, 9:00–12:00

ANSWER FORM

Student number:	
Name: REHMA	BCS.
Section below	v is not to be filled in by the student
Marks:	

Exam AE1-914-I	Student number:
January 27, 2006	Name:
Problem 1 (Weight 1.0, approx. 20 mi	n.)
Question a	
What is the essential difference between indeterminate structure?	a kinematically determinate and a kinematically
A structure is	kinematically determinate
when it is suppu	nted in such a way
that all free s	nted in such a way novements one prohibited
In all other cases	, the structure is called determinate (or a mechanism
kinematically in	determinate (or a mechanism
Question b	
What is the essential difference between minate structure?	a statically determinate and a statically indeter-
When the number	of constraints is just nantee kinematic e structure is called inate.
sufficient to quo	nantee kinematic
determinacy. The	e structure is called
statically detern	inate.
When constraints a	an be removed without
cancelling out th	e static equilibrium, the
shucture is calle	e static equilibrium the ed statically indeferminate
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Exam AE1-914-I	Student number:	
January 27, 2006	Name:	

For 2-dimensional trusses a fast method can be used to determine the degree of determinacy of a structure:

s = 2k - 3

Question c

Explain what this formula means and also explain how it can be used to determine the degree of kinematical and statical (in)determinacy for trusses in general.

A 2-dimensional structure is kinematically
determinate when it consists of rigid
triangles. In that case, the number of
bans (s) is equal (or greater) than the
number of equilibrium equations (= 2 times
the number of nodes k) minus the number
of inknown constraints. (3) Note that this is
a necessary, but not a sufficient requirement.
(Bars can be placed in such a way that
the condition 5≥2k-3 is met, but the
structure is still kinematically indeterminate
When s>2k-3, the structure is statically
When s>2k-3, the stricture is statically indeterminate, when s= 2k-3, the stricture
is statically determinate
t
When S< 2k-3, the Structure is lamematically
When S< 2k-3, the Structure is dementically indeterminate

Exam AE1-914-I	Student number:	
January 27, 2006	Name:	

Question d

Evaluate the degree of kinematical and statical (in)determinacy of the truss below.

For this truss, 5>2k-3. But, remember that this is a necessary, but not a sufficient condition. In this case, the bars are placed in the wrong position.

Actually, the truss censists of three parts, each of them statically indeterminate. The complete shiretime however is a mechanism (kinematically indeterminate)

Student number:		 	_		

Name:

Problem 2 (Weight 2.0, approx. 35 min.)

A pontoon is anchored by a cable in a fjord which is $30\,\mathrm{m}$ deep. The cable is being weighted down by two concrete blocks of $1200\,\mathrm{N}$ each. It is assumed that the cable will not stretch under the given loads. In the situation below a horizontal force F due to the wind load is acting on the pontoon.

NOTE: The vertical position h of point D is unknown!

Question a

Calculate the magnitude of the force F due to the wind load acting on the pontoon. Draw the force that the cable exercises on the pontoon in the correct direction.

Exam	AE1-914-I
TAVOTET	TTT-014-T

Student number:

January 27, 2006

Name:

Exam	AE1-914-I	
Literia		

Student number:	 	 		

Name:

Question b

Determine the vertical position h of point D

Sum of moments about D

3 ±

h = 24 m.

Question c

Determine the maximum force in the cable and indicate where this occurs.

Force is maximum where the slope is maximum, i.e. point A:

N= 3600 PZ N,

Exam AE1-914-	Exam	AE1-	91	4-]
---------------	------	------	----	-----

Student number:		<u> </u>	<u> </u>	 <u> </u>

Name:

Problem 3 (Weight 2.5, approx. 45 min.)

The structure below consists of parts AS and SBCDE which are connected by a hinge in S. The structure is loaded by a couple of $20\,\mathrm{kNm}$ halfway between S and B and a uniform distributed load of $10\,\mathrm{kN/m}$ on part DE. The structure is simply supported in A and in B.

Question a

Calculate the reactions and draw them in the figure as they act on the structure in reality.

$$\Sigma M_{B}^{\dagger}$$
 2. $\frac{4}{5}F_{AS} - 20 - 3.20 = 0$

$$F_{AS} = \frac{5}{8}(20 + 3.20) = 50 \text{ kV}.$$

$$7 \qquad A = 50 \text{ kV}.$$

Exam	A E.1.	914-	T
Lyxann	WENT-	7 L 42-	Ŧ

Student number:				

-	~	0000
January	27.	2006

Name:

+		
5.F.	- & FAS	+ Bh = 0

$$\Sigma F_{y}^{1+} - \xi F_{x} + B_{y} - 20 = 0$$

Exam	AE1-	914-I	

Student number:		 		
Name:				

Question b

Draw the moment diagram (M-diagram) of the entire structure with the appropriate deformation signs. Mention all relevant values and draw the tangents when necessary.

Question c

Draw the shear force diagram (V-diagram) of the entire structure with the appropriate deformation signs. Mention all relevant values.

AE1-9	14-I
	AE1-9

Student number:	 			
Name:				

Question d

Draw the normal force diagram (N-diagram) of the entire structure with the appropriate signs for tension and compression. Mention all relevant values.

Question e

Isolate joint C and draw all forces (and moments) as they act on the joint

Exam	AE1-9	14-T
LIAGIII	FLIJI-U	, + +

			İ		
Student number:		L	<u> </u>	l,	

Name:

Problem 4 (Weight 2.5, approx. 45 min.)

As indicated in the figure, the truss is loaded by three forces of 10 kN each

Question a

Identify the zero-force members and indicate them in the figure.

eq, Eq, JL, KL

Question b

Calculate the reactions in A, B, and C and draw them in the figure as they act on the structure in reality.

Exam	AE1-914-I

Student number:				

Name:

	a a sa a municula a municula de mado de a a a a constante de a a a constante de a a a constante de a a constan		
ΣF_{\star} .	3-10	- = 1/2 F	= 0

Question c

Calculate all the forces in the members with the correct sign for tension and compression. Write all answers in the table at the end of this question.

15 . 7	
Norte S	
	אכיו
	~ ~
	R

Nocle D

FOH + = 1/2 FOJ - FAD= 0

Nocle E

EFy: For - Fre - EV2 Fce = 0

Exam AE1-914-I	Student number:
January 27, 2006	Name:

ATT TO A	

$F_{ m AD}$	$F_{ m BE}$	$F_{ m CE}$	$F_{ m CG}$	$F_{ m DE}$	$F_{ m DJ}$	$F_{ m DH}$
30	0	-30Vz	0	-30	2012	10
$F_{ m EG}$	$F_{ m EJ}$	$F_{ m HJ}$	$F_{ m HK}$	$F_{ m JK}$	$F_{ m JL}$	$F_{ m KL}$
0	-30	-10	10	-10/2	0	0

kN

Question d

Draw the force polygon for the equilibrium of point \mathbf{D}_{\cdot}

Exam	AE1-	91	4-I
------	------	----	-----

Student number:				

Name:

Problem 5 (Weight 2.0, approx. 35 min.)

The structure below consists of beam OAB with arms AC and AD attached perpendicularly. The weight of the structure may be neglected. Point O is a ball- and socket joint. The ball that is attached to point B slides over a frictionless slope. The angle α of the slope with respect to the x-axis is equal to $\tan \alpha = 3/4$. The structure is kept in equilibrium by means of the cables AE and CG which are parallel to the x-axis. A mass with a weight of $W = 4 \, \mathrm{kN}$ is attached to point D.

Question a

Calculate the reaction(s) in B. Draw them in the figure as they act on the structure in reality. \bullet

Exam AE1-914-I	Student number:
January 27, 2006	Name:

Question b	
Calculate the forces in cables	AE and CG.
CALL	-2Fcq + W=0
2 Mylo	-2tcq + W=0
***************************************	Feg = 2 kN.
2 M2/a	2Fcg + 2FAE - 4Bx =0
	-1 AC
**************************************	FAE = 2Bx - Fcq = 1 kN.
999898900900098000000000000000000000000	A6 CY

Exam AE1-914-I	Student number:
January 27, 2006	Name:
Question c	
Calculate the reaction act on the structure in	n(s) in the ball- and socket joint O. Draw them in the figure as they n reality.
2Fx:	Ox + Bx - Fg - FAE = 0
	$O_{\chi} = 1.5 \text{ kV}$
2Fy.	0, = 0 kN,
ΣF _q	0= + B= - W=0
	$O_2 = 2 \text{ kN}.$
w 11 a a a a 11 1 1 a a a 12 a 1 a 1 a 1	
	de le composition de la composition de

AVAIN 6 116 1	
