Delft Applied Mechanics Course: Statics

AE1-914-I

January 28, 2005, 9:00–12:00

ANSWER SHEETS

Studentnumber:			
Name:			
I he information	below is NOI to be provided by the	student	
Grading:			
		\Longrightarrow	

January 28, 2005

Name:

Problem 1 (Weight 1.0, approx. 20 min.)

A cable is attached to a horizontal roller in A and to a hinge in D and is loaded in B and C. There is a horizontal force of 10 kN in horizontal direction acting on the support in A as drawn in the figure

N.B.: The questions may be answered in a different order

Question a

Determine the cable forces in the sections AB, BC and CD.

Studentnumber:		L	L	

January 28, 2005

Name:

Question b

Determine the forces F₁ and F₂

Answer

Determine the reaction forces and draw them in the figure on the previous page in the right direction.

Dh: see a

Nocle 5:

$$\sum F_y^{\dagger +}: A_y - \frac{1}{2}V_2 F_{AB} = 0$$

$$A_y = 10 \text{ kN}.$$

Please collect the results in the table below.

F ₁	F_2	F_{AB}	F_{BC}	F_{CD}	A_v	D_h	D_v
10	20	10/2	10	10/5	10	10	20

all in kN

Studentnumber:

January 28, 2005

Name:

Problem 2 (Weight 2.0, approx. 35 min)

The structure in the figure consists of a part AS and a part SBCDE which are connected by a hinge in S. The structure is clamped in A and is supported by a horizontal roller in C. A horizontal force of 50 kN is applied at point E and a vertically distributed force of 20 kN/m is applied at segment CD.

Question a

Using the principle of virtual work, calculate the reaction moment in support A. Clearly indicate the virtual displacement field and sign convention used.

$$\delta W = M \delta \Theta + F \cdot 2 \delta \Theta + 4q \cdot \delta \Theta = 0$$

$$(M + 2F + 4q) \delta \Theta = 0$$

$$M + 2F + 4q = 0 \implies M = -180 \text{ kNm}$$

Studentnumber:

January 28, 2005

Name:

Question b

Using the principle of virtual work, calculate the reaction force in support C. Clearly indicate the virtual displacement field and sign convention used

Answer

$$\delta W = -F 4 \delta \Theta + C_V 8 \delta \Theta - 4q \cdot 10 \delta \Theta = 0$$

$$(-4F + 8C_V - 40q) \delta \Theta = 0.$$

$$8C_V = 1000 \qquad C_V = 125 \text{ kW}.$$

Question c

Using the principle of virtual work, calculate the bending moment in the structure just right of B. Clearly indicate the virtual displacement field and sign convention used.

$$\delta W = F4\delta\theta + M\delta\theta + M\delta\theta - 4q 2\delta\theta = 0$$

$$(4F + 2M - 8q) \delta\theta = 0$$

$$2M = 100 - 200 \qquad M = -20 \text{ kNm}.$$

Studentnumber:				
Managa				

January 28, 2005

Name:

Problem 3 (Weight 25, approx 45 min.)

A massless pole CD in the y-z plane is secured by two cables AC and BC. The pole is supported by a hinge in D. Point C is loaded by a vertical load of 140 kN. The position of C is (0,6,12) meter.

Question a

Calculate the vertical reaction force D_z in point D.

	f I	i			
C 1 1	I				
Studentnumber:	L			 	

January 28, 2005

Name:

Question b

Calculate the force F_{CD} in the pole and the reaction forces D_x and D_y in D_x

Answer

$$D_x = 0$$
 kN.
 $F_{cb} = \sqrt{280^2 + 7c^2} = 2.88.6$ kN.

Question c

Calculate the reaction forces in A and B in the x-, y- and z- direction

$$\vec{CA} = 4i - 6j - 12k | \vec{CA} = 14.$$
 $n_{ca} = \frac{4}{14}i - \frac{6}{14}j - \frac{12}{14}k$
 A_{x}

Gt - 1 t 1				
Studentnumber:				<u>i </u>

January 28, 2005

Name:

Question d

Calculate the cable-forces $F_{\mbox{\scriptsize AC}}$ and $F_{\mbox{\scriptsize BC}}$

Answer

Question e

Draw all components of the reactions in A, B and D in the figure below in the right direction and collect all the answers in the table

A_x	A_y	A_z
20	30	68
B_x	B_y	B_z
20	40	80
D_x	\mathbf{D}_{y}	D_z
0	70	280
F_{AC}	F_{BC}	F_{CD}
70	91.65	288.6

Studentnumber:

January 28, 2005

Name:

Problem 4 (Weight 25, approx. 45 min.)

The structure ASB as shown in the figure (note that S is a hinge) is loaded by a uniformly distributed loaded on section SD.

Question a

Calculate the reaction forces and draw them in the figure as they act on the structure in reality.

Iotal: ΣM_A : 11.120 - 20 By = 66 kN

2Fgt: Av+3v-120=0 Av=54 W

Section ACS EMs) -8: Ay + 6 Ah = 0 Ah = 72 kN.

Total: SF, + Ah+Bh = a Bh = -72 kN.

Check Section SDB

EMs 3.120 - 12.66 + 6.72 =0

			
Exam AE1-914-I	Studen	ntnumber:	
January 28, 2005	Name:		
Question b			
Calculate the forces i	n the hinge S		
Answer			
Section	ACS		
***************************************	↓ Sv	**************************************	
	S,		
72	· · · · · · · · · · · · · · · · · · ·		
1 54			
ΣF _* :	72- Sh = 0	Sh = 72	kN
≤fy:	54-S,=0	Sv = 20	, kN.
]		
			-404-0401

Studentnumber:

January 28, 2005

Name:

Question c

Draw the bending moment diagram (M-diagram) of the structure with the correct deformation symbols Clearly indicate the characteristic values and draw the tangents when

Question d

Draw the shear force diagram (V-diagram) of the structure with the correct deformation symbols. When necessary, make use of the slopes of the bending moment diagram. Clearly indicate the characteristic values

Studentnumber:

January 28, 2005

Name:

Question e

Determine the shear force $V_{\rm AC}$ and the normal force $N_{\rm AC}$ in section AC.

Question f

Consider force equilibrium of point C. Draw all forces in C in the blown up picture on the answer sheet and demonstrate by using a force polygon that the forces are in equilibrium

a						 ŀ
Studentnumber:	L <u></u>	L		l	<u> </u>	 J

January 28, 2005

Name:

Problem 5 (Weight 2.0, approx. 35 min.)

The truss structure in the figure is loaded by two forces. The structure is supported by a hinge in A and a horizontal roller in G.

Question a

Determine the reactions in A and G and draw them in the figure on the previous page as they act on the structure in reality

$$\Sigma M_{A}$$
): $12G_{V} - 4.16 - 8.16 = 0$ $G_{V} = 16 \text{ kW}$

$$\Sigma F_{S}:^{1+} A_{V} + G_{V} - 16 - 16 = 0$$
 $A_{V} = 16 \text{ kW}$

$$\Sigma F_{X}:^{-} A_{h} = 0$$

January 28, 2005

Name:

Question b

Indicate the zero-force-members in the figure below.

Answer

Question c

Determine the forces in the members AB, AC, JK, DK, DE, EG and GK, using the correct signs for tension or compression. Collect the results in the table.

SFx: -FEG + 16=0 FEG= 16 KN

F_{AB}	F_{AC}	F_{JK}	F_{DK}	F_{DE}	$ m F_{EG}$	F_{GK}
0	16	~16		16	16	-16/5
0	-10	10		7.0	' •	70 42

all in kN.