mesoscopic superconductivity



superconductivity in the bulk: Cooper pairs

* electron-phonon interaction leads to an attraction of

electrons
hvr

fo = TA

* Cooper pairs: bound states of two electrons with opposite

momentum and spin (size of Cooper pair: coherence length) Energy gap—Tc = 45 K
Energy gap »T¢c=15K
T T \ T

\
* the net spin is zero and as a consequence they obey Bose- | \

Einstein statistics: at low T all pairs condense in the lowest =
energy state (no Pauli exclusion !)

Density of states

* the superconducting state can then be described with a j
single, macroscopic wave function: ¥ = |'V| exp (i) — -
|¥|2: density of Cooper pairs; ¢: phase of the condensate T —

* the pairing leads to an energy gap A in the spectrum; the am
A(0)

density of states is N (E) = Ny(E) E/(E2-D?)!2 08

0.6
* energy gap A ~ 1.75kgT - needed to excite a quasiparticle 0.4
from the ground state (condensate) 02
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penetration depth and critical magnetic field
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superconductivity in particles << A,& ?
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Spectroscopic Measurements of Discrete Electronic States in Single Metal Particles

D. C. Ralph, C.T. Black, and M. Tinkham
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(Received 21 November 1994)

We have made tunnel junctions containing one Al particle of diameter <10 nm. Tunneling via
discrete electronic states in the particle produces steps in the current-voltage (/-V) curve, providing, for
the first time, a spectroscopic measurement of the electronic energy levels in a metal particle. With
superconducting leads, the /-V contribution from each discrete state has the form of the BUS density of
states. We can determine the parity of the electron number in the particle’s ground state through the
effects of an applied magnetic field on the /-V curve.
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data has slope 3.7ky.
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Determine the superconducting gap from the experiment?



a theoretical answer

PHYSICAL REVIEW B VOLUME 59, NUMBER 14 1 APRIL 1999-11

Superconductivity in ultrasmall metallic grains

Fabian Braun and Jan von Delft
Institut fiir Theoretische Festkorperphysik, Universitat Karlsruhe, D-76128 Karlsruhe, Germany
(Received 16 January 1998; revised manuscript received 27 April 1998)

What happens to superconductivity when the sample is (a) Large Grain
made very very small? Anderson' addressed this question o
already 1n 1959: he argued that if the sample is so small that N?
its electronic eigenspectrum becomes discrete, with a mean Wmmmmﬂﬂﬂm mﬂﬂTmrrmmm

level spacing d=1/N(e;)~1/Vol, ‘‘superconductivity
would no longer be possible’” when ¢ becomes larger than % (b) Small Grain

the bulk gap A. Heuristically, this is obvious (see Fig. 1 " ? \
below): A/d is the number of free-electron states that pair ="
correlate (those with energies within A of &), ie., the

“‘number of Cooper pairs’’ in the system: when this becomes ' "/ \(¢) Ultrasmall Grain
=1, it clearly no longer makes sense to call the system “‘su- Am~d
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FIG. 1. An illustration of why ‘‘superconductivity breaks
down’” when the sample becomes sufficiently small. Each vertical
line represents a pair of single-particle state |j =) with energy £,



even-odd effect

Energy depends on the parity of the superconductors:

U = E¢(Ne — aVg)2+ A A =0ifN=2n
A = Aif N =2n+1

The ground state energy for odd n is A above the minimum energy for even n.

Even in an experiment on aluminum islands with 10° electrons, the parity of such a big number
can be measured!!
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FIG. 4. Variations of the average value n of the number of
extra electrons in the box as a function of the polarization
CsU/e, at T=25 mK. Trace N: normal island. Trace S: super-
conducting island. For clarity, trace S has been offset vertically
by 4 units.
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P. Lafarge et al.
Phys. Rev. Lett. 70 (1993) 994



Andreev reflection at a N-S interface

et

\
N .
/
* Clean N-S interface: E>A quasiparticle transport is possible; E<A single-particle tunneling is
suppressed exponentially.

« ordinary reflection at a clean SN interface requires a momentum change of the the charge
carriers of about 2p,.

* AP,..x = (dU/dx) At, with dU = A, dx = 2&, and At = 28 /v, so that Ap,., = 2p; (A/E;) << 2p,

* An electron can, however, be reflected as a hole with opposite group velocity. In this way a
charge 2e is transferred — Andreev reflection (so there is no charge conservation)

* In Andreev reflection Cooper pairs are transferred into a superconductor from a normal
conductor in a coherent way



Andreev reflection at a N-S interface

- energy conservation: E,=E; E, =-E; E_, =0 (E=energy with respect to E)
» momentum is (almost) conserved: electron-hole symmetry is not exact, only exact for charge
carriers at the Fermi energy

Ak = (dk/dE), AE

AE = 2E so that (dk/dE),_= 2E/hv,

k, = k. + E/hv,
k, = k. - E/hv,

* Andreev reflection is phase coherent which means that there is a well defined relation between
the phase of the electron and the reflected hole

¢, = ¢, + ¢,— arccos (E/A)

@, = ¢, — @ — arccos (E/A) E = 0 then arccos(e/A) = n/2

* when there is only one superconductor, ¢_ does not play a role and can be chosen to be zero
by an appropriate gauge transformation; with more than one superconductor involved, phase
differences start to play a role



conductance of an ideal N-S

- ideal Andreev reflection doubles the conductance of an N-S system
compared to that of an N-N system (e.g. by applying a magnetic field or

large voltage)

* N-S point contacts are widely used to measure the gap and its
temperature dependence for a large variety of superconductors and
other materials with a energy gap (point contact spectroscopy)

PHYSICAL REVIEW B

Metallic to tunneling transition in Cu-Nb point contacts

Department of Physics, Tarvard University, Cambridge, Massachusers 02138
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conductance of a non-ideal N-S interface

* a non-ideal interface destroys Andreev reflection, i.e. ordinary reflection becomes more important

» this is usually described as introducing a delta function tunnel barrier between N and S of strength
H; the parameter Z characterizes this barrier and is defined as 2nH/hv,.

* large Z: tunnel contact (S-I-N interface)

» excess current indicates the presence of Andreev reflection

excess- 1}
current

FIG. 6. Current vs voltage for various barrier
strengths Z at T =0. These curves attain their asympo-
totic limits only for very high voltages. For example,
the tunnel junction (Z =50) curve will be within 1% of
the normal-state curve (dotted line) only when eV > 7A.

Can you understand why ordinary reflection
becomes more important given the discussion
about momentum change a few slides ago?
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FIG. 7. Differential conductance vs voltage for vari-
ous barrier strengths Z at T'=0. This quantity is pro-
portional to the transmission coefficient for electric
current for particles at E =eV.

Blonder, Tinkham and Klapwijk, Phys. Rev. B 25 (1982) 4515



enhancement of interference effects

The presence of a superconductor enhances any particle interference effect in the normal state
since the (dynamical) phase of the original electron and reflected hole cancel (at E = 0)
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enhanced weak localization

* since the reflected hole and electron do not acquire additional phase shifts along their time
reversed paths, there is an enhanced probability for coherent backscattering (effect is roughly the
same size as in the normal state)

 important for contacts with a high transparency (for samples with many Andreev reflection events)

 “t is as if Andreev reflection effectively doubles the length of the disordered region”
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FIG. 3. Differential conductance as a function of the bias volt-
age at several temperatures (without quantum point contact; V,=
—400 mV; from top to bottom 7=0.9, 0.7, and 0.01 K).

Lensen et al., Phys. Rev. B 58 (1998) 4888



enhanced weak localization

stemperature, magnetic field and a voltage destroy the enhanced weak localization
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FIG. 1. Normalized differential conductance as a function of the
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bias voltage at several magnetic fields (V,=0 mV: from top to FIG. 2. Differential conductance as a function of the bias volt-
bottom B =060, 35, 20, 15, and 0 mT); the inset shows the layout of age at several temperatures (V,=0 mV: from top to bottom T
the center of the sample on scale (the hatched areas are Ti/Sn con- =4.2,25,1.8,0.9, 0.75, and 0.01 K).

tacts, the gray and black areas are gold gates).

Lensen et al., Phys. Rev. B 58 (1998) 4888



reflectionless tunneling

- because of Andreev reflection, an electron in a disordered system gets more than one opportunity

to undergo Andreev reflection; this results in a enhancement of the conductance around zero bias
since the bias voltage adds additional phases (see previous slides)

 important for S-N contacts with a low transparency
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FIG. 2. Normalized conductance-voltage characteristics at 0 T s o o: 1o
temperatures of 8.6, 6.0, 4.2, 2.5, 1.7, 0.8, and 0.5 K and zero vV (mV)
, : , x 109 -3 : =
magnetic field for a 2.5>10™-cm device (R, =0.27 Q). FIG. 3. Normalized conductance-voltage characteristics at

0.42 K in parallel magnetic fields of 0, 9, 18, 27, 44, and 89 mT
for a 2.5%10"-cm ~* device (R, =0.24 Q).

Kastalsky et al., Phys. Rev. Lett. 67 (1991) 3026

Reservoir



Andreev bound states in a S-N-S junction

* an electron with energy E<A can not enter
superconductor 2

« it will be reflected as an hole with energy —E in
the opposite direction, retracing the original path

of the electron ;

: 'E :
* the hole reaches the left superconductorand  ---------- SEREEE TP -_-:@ e
will be reflected as an electron with energy E’ l. o E | ,
(the energy with respect to the Fermi energy of ;‘" .h E
superconductor 1; with no bias applied E = E’) ; ;

« full quantum mechanical description of this ! | :
process: Andreev bound state

« condition for the formation of a bound state (1D picture): total phase acquired during
one cycle is a multiple of 2n: ¢, - ¢, + (k, — k,) L - 2arccos (E/A) = 2nn

* long junction: arccos term << (k, — k;) L and using k, = k. + 2E/hv_ one finds:

E, = hv,/2L ( 2x (n+1/2) £ ¢) with ¢ = ¢, - 0

* + sign: starting with a right-moving electron (left-moving hole); — sign starting with a
left-moving electron (right-moving hole)



supercurrent in a S-N-S junction

* Andreev bound states are confined states which carry a net supercurrent (1D long junction):
= - (2e/h) 2 dE_/do with E, =hv /2L (2r (n+1/2) £ ¢)

In

+ each state carriers a supercurrent of ev. /L and each subsequent state carriers a supercurrent
in the opposite direction

* short junction (see lecture notes & =hv /4A >L)): | = 2eAlnh

- often one looks at the | R product which for a short junction equals 2A/e (check this for a
point contact with one channel, but the result is independent on the number of channels)

* Andreev reflection at the S-N interface and
phase-coherent propagation in the normal
conductor can thus be viewed as the
microscopic origin of the proximity effect:
induced superconductivity in a normal metal
which occurs over a distance &

I
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=
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Doh et al., Science 309 (2005) 100 | (nA) 100



tunable supercurrent through a
S-semiconducting nanowire-S junction

* In this case is the normal metal a diffusive semiconducting nanowire:
gate tunable superconducting properties

- very difficult to make clean normal metal-semiconductor interfaces;
InAs is one of the materials for which it works

V(wV) 3

2 (nA) 2

Vg = 0 (red), =10 (blue), —50 (green), =60 (purple), and 71 V (black)

Doh et al., Science 309 (2005) 272

Nanoscale superconductor/semiconductor hybrid devices are assembled from
indium arsenide semiconductor nanowires individually contacted by aluminum-
based superconductor electrodes. Below 1 kelvin, the high transparency of the
contacts gives rise to proximity-induced superconductivity. The nanowires form
superconducting weak links operating as mesoscopic Josephson junctions with
electrically tunable coupling. The supercurrent can be switched on/off by a gate
voltage acting on the electron density in the nanowire. A variation in gate
voltage induces universal fluctuations in the normal-state conductance, which
are clearly correlated to critical current fluctuations. The alternating-current
Josephson effect gives rise to Shapiro steps in the voltage-current characteristic
under microwave irradiation.
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multiple Andreev reflection (MAR)
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Figure 1.1: An electron injected from superconductor I can not enter superconductor 2,
since the density of states (DOS) is zero for |E| < |Awz|. Current transport can only occur
if the electron is Andreev reflected into a hole. The number of Andreev reflections needed
before the particle can enter the superconducior as an excitation depends on the applied

voltage €V = iy — p1o between both superconductors.



multiple Andreev reflection (MAR): sub-
harmonic gap structure

Single quasiparticle J ! *The dc current exhibits sub-
process : harmonic gap structure at voltages
2A Sy, I eV eV, = 2A/n (n integer)
2A v *Increase in current every time the
next MAR process (i.e. n) becomes
available
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subharmonic gap structure: atomic contacts

The extended quantum states that carry the
current from one bank to the other necessarily proceed through
the valence orbitals of the constriction atom. It thus seems
reasonable to conjecture that the number of current-carrying

AI One'atom coO ntact (30 m K) modes (or ‘channels’) of a one-atom contact is determined by the
number of available valence orbitals, and so should strongly ditfer
for metallic elements in different series of the periodic table.

: : . , :
4 L Pb one-atom contact (1.5K)
t&‘)\ 3
% 3
= o
) = 2
-
L "
é —_'-'-5‘-';‘. .
1
_‘. _______ &
0 3
voltage (A/e)
(a) (b) (c) (d)
0.997 || 0.74 || 0.46 [ 0.025 (a) (b) () (d) (e)
0.46 0.11 0.35 0.955 0.89 0.76 0.65 0.026
0.29 0.07 0.355 || 0.36 || 0.34 || 0.34
0.085 0.145 0.27 0.29
0.005 0.005 0.02 0.12

The mesoscopic PIN code, {7;}, can be measured!!!

E. Scheer et al., Phys. Rev. Lett. 78 (1997) 3535 E. Scheer et al., Nature 394 (1998) 154
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Proximity Effect and Multiple Andreev Reflections in Gold Atomic Contacts

E. Scheer.!* W. Belzig.> Y. Naveh,*" M. H. Devoret,* D. Esteve,* and C. Urbina?
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FIG. 2. Measured (symbols) and calculated (lines) IVs in the
tunnel regime for Al-Au-Al samples No. | (triangles) and No. 2
(circles). and pure Al sample No. 3 (squares). The dotted line

Au: only one transport channel



Quantum supercurrent transistors in carbon

nanotubes

namre Vol 439|23 February 2006|doi:10.1038/nature04550

Electronic transport through nanostructures is greatly affected by
the presence of superconducting leads'. If the interface between
the nanostructure and the superconductors is sufficiently trans-
parent, a dissipationless current (supercurrent) can flow through
the device owing to the Josephson effect*”. A Josephson coupling,
as measured by the zero-resistance supercurrent, has been
obtained using tunnel barriers, superconducting constrictions,
normal metals and semiconductors. The coupling mechanisms
vary from tunnelling to Andreev reflection®®. The latter process
has hitherto been observed only in normal-type systems with a
continuous density of electronic states. Here we investigate a
supercurrent flowing through a discrete density of states—that
is, the quantized single particle energy states of a quantum dot’, or
‘artificial atom), placed between superconducting electrodes. For
this purpose, we exploit the quantum properties of finite-sized
carbon nanotubes'’. By means of a gate electrode, successive
discrete energy states are tuned on- and off-resonance with the
Fermi energy in the superconducting leads, resulting in a periodic
modulation of the critical current and a non-trivial correlation
between the conductance in the normal state and the super-
current. We find, in good agreement with existing theory", that
the product of the critical current and the normal state resistance
becomes an oscillating function, in contrast to being constant as in
previously explored regimes.
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superconductivity when level aligns with
middle of the gap (Fermi energy)

a 3-
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Figure 3 | Correlation between critical current and normal state
conductance and modulation of the I¢Ry product. In all panels, the black
dots represent the experimental data points (T = 30 mK) and the red/blue
curves are theoretical plots. a, Critical current, I, versus Vg for the
resonance shown in Fig. 2¢. The theoretical lines are fits to Ic = Iy[1 — (1
I'T/((Vg — Var)? +0.25I%)'/2] (red curve) and Icy = Iom[1 — (1

T /((Vg — Ver)? +0.25I%))Y2]3/2 (blue), as explained in the main text.
Vgr is the value of gate voltage on-resonance. All gate voltages and I's are
converted into energies by multiplying by the gate coupling factor,

a = 0.02meV mV ", obtained from measurements in the nonlinear regime.
b, Conductance, Gy, as a function of Vg in the normal state (B = 40 mT)
and the corresponding fit to Gy = 4¢* /(I T, /((Vg — Vr)* +0.25I')).
¢, I Gy correlation plot. The data show a non-trivial correlation, with a
stronger decrease of I than expected from the theoretical curve I =

ITo[l — (1 14..f'4GNJ1/2] (red curve). The 1/4 factor simply denotes that Gy is
measured in ¢*/h units. The difference can be almost entirely accounted for
by the influence of the electromagnetic environment, resulting in a
measured Icy = Ip[1 — (1 l,.f'4(}N)1/2]3/2 (blue curve). An ideal SNS
junction, with N a normal metal with continuous density of states, would
exhibit a linear I -Gy correlation curve (grey dashed curve). d, IcRy

Gy (e%/h) Va M) product versus Vg, resulting from dividing the experimental data and theory
curves from a and b. The grey dashed line indicates a constant I R product
such as in a SNS junction.




Josephson junction: S-I-S tunnel junction

Josephson relations
_hod
C 2edt
: N\
I(t) = Isin(¢(t))

U(t)

Mesoscpoic Josephson circuits:

« Competition between Josephson coupling energy
(hlc/4p), which favors the flow of a supercurrent
and the charging energy, which tries to localize the
Cooper pairs.

* There exist a Heisenburg relation between the
fluctuations in the phase on a superconducting
island and fluctuations in the number of Cooper
pairs on it:

[Ad,AN] > 1/2

* The flux quantum bits (qubits) and charge qubits



The three main effects predicted by Josephson follow from these relations:

1. The DC Josephson effect. This refers to the phenomenon of a direct current crossing the
insulator in the absence of any external electromagnetic field, owing to tunneling. This DC
Josephson current is proportional to the sine of the phase difference across the insulator.

2. The AC Josephson effect. With a fixed voltage across the junctions, the phase will vary
linearly with time and the current will be an AC current with a frequency proportional to the applied
voltage. The complete expression for the current drive /_, Qecomes

du o
Jirr.':i-.*f,: C}'E | IP;SI-HQ | E

This means a Josephson junction can act as a perfect voltage-to-frequency converter.

3. The inverse AC Josephson effect. If the phase takes the form

¢(t) = ¢g + nwt + asin(wt)

the voltage and current will be

U(t) = Sow(n+acos(wt), I(t) =1, > Jnla)sin(go + (n +m)wt)
€ mM=—00
- h o
The DC components willthenbe  Up-~ = ng_w, It) = I.J_,(a)singg
e

Hence, for distinct DC voltages, the junction may carry a DC current and the junction acts
like a perfect frequency-to-voltage converter (Shappiro steps; see next slide).

from Wikipedia



Applications of the Josephson effect
The Josephson effect has found wide usage, for example in the following areas:

» SQUIDs or superconducting quantum interference devices, are very sensitive
magnetometers that operate via the Josephson effect. They are widely used in science
(mesoscopic experiments) and engineering.

* In precision metrology, the Josephson effect provides an exactly reproducible
conversion between frequency and voltage. Since the first is already defined precisely
and practically by the caesium standard, the Josephson effect is used, for most
practical purposes, to give the definition of a volt (although, as of July 2007, this is not
the official BIPM definition).

« Single-electron transistors are often constructed of superconducting materials,
allowing use to be made of the Josephson effect to achieve novel effects. The
resulting device is called a "superconducting single-electron transistor".

-40| %0 7 (61 10
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from Wikipedia



	



