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If we have a generalised coordinate q of 

a Lagrangian system such that 

but 

then q is an ignorable coordinate 



If q is an ignorable coordinate 

and consequently 
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the generalised momentum associated 
with q is an integral of motion 



Satellite system 
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Consider a system of n dofs with the last m 
being ignorable, then 



The Routhian function is defined as 

and is equivalent to the Lagrangian, 
without the ignorable coordinates 
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The equations of motion for the 
non-ignorable coordinates are 
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and the Jacobi energy integral (with the  
summation relating to the non-ignorable  
coordinates) is 
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Steady motion 

For the non-ignorable coordinates: 



Dissipative forces 
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is the Rayleigh dissipation function 



check the book for examples! 



Lagrange multipliers 



Analysis of contact 
between tyre 
and ground 



Consider a system described by n variables 
and m constraints: 



Constraints introduce reaction forces. 

In we have which provides 

a reaction in the direction to 
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In generalised coordinates we get the same 
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As a consequence and 

0 qQ  RW



is a Lagrange multiplier 

(extra unknown) 



Equations of motion with constraints 
(formulated for n coordinates (instead of ndof) 



When should you use Lagrange multipliers? 

(1) When the identification of degrees of 
freedom is difficult. 

(2) When reaction or connection forces need 
to be evaluated. 


