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If we have a generalised coordinate g of
a Lagrangian system such that
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then g is an ignorable coordinate




If g is an ignorable coordinate
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the generalised momentum associated
with g is an integral of motion




¥ Satellite system
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Consider a system of n dofs with the last m
being ignorable, then
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The Routhian functlon is defined as
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and is equivalent to the Lagrangian,
without the ignorable coordinates
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The equations of motion for the
non-ignorable coordinates are
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and the Jacobi energy integral (with the
summation relating to the non-ignorable

coordinates) is




Steady motion
For the non-ignorable coordinates:.
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Dissipative forces
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same for y and :z
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is the Rayleigh dissipation function
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check the book for examples!




Lagrange multipliers




Analysis of contact
between tyre

and ground




Consider a system described by n variables
and m constraints:

{q1,-- - qn}
fj‘(QLﬂqu):O jzl,...?’n

ndof =n—m




Constraints introduce reaction forces.
In R*we have f(z,y.z) =0 which provides

a reaction in the direction L to f =20
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In generalised coordinates we get the same
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As a consequence Qf = )\A and
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A = \(t) is a Lagrange multiplier

(extra unknown)




Equations of motion with constraints
(formulated for n coordinates (instead of ndof)
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When should you use Lagrange multipliers?

(1) When the identification of degrees of

freedom is difficult.

(2) When reaction or connection forces need
to be evaluated.




