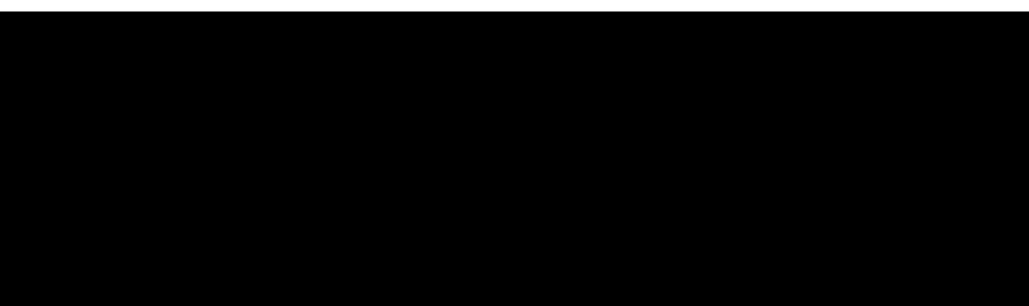
Dynamisc & Stability AE3-914

Linear dynamical systems; linearising $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, t)$:

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$

where **A** is constant and includes *system characteristics* (mass, damping, stiffness) and (possibly) *force characteristics*.



Solution: $\mathbf{x}(t) = K\mathbf{c}e^{\lambda t} \implies \dot{\mathbf{x}}(t) = K\lambda\mathbf{c}e^{\lambda t}$

$$= K\lambda c e^{\lambda t} = KAc e^{\lambda t}$$

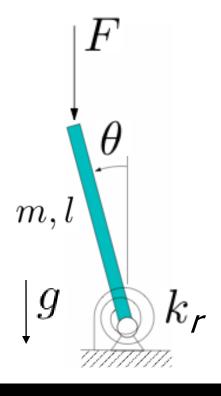
Hence, λ is an eigenvalue of the matrix **A** $\mathbf{Ac} = \lambda \mathbf{c} = \mathbf{Ac} = \mathbf{A} \mathbf{I} = 0$

$$\mathbf{x}(t) = \sum K_i \mathbf{c}_i e^{\lambda_i t}$$
 when is this stable?

a) When $\lambda_i \in \mathbb{R}$ and $\lambda_i < 0$ i = 1, ..., nb) When $\lambda_i \in \mathbb{C}$ and $\operatorname{Re}(\lambda_i) \leq 0$ i = 1, ..., nc) Any combination of a) and b)

Non-linear dynamical systems

Linearisation about equilibrium points



Equilibrium points?

Stable at $\theta = 0$?

Stability of conservative systems

Conservative system:

Applied forces can be derived from the potential energy *V*

 $Q = -\frac{\partial V}{\partial q}$

Equilibrium:

$$\dot{q} = \ddot{q} = 0$$

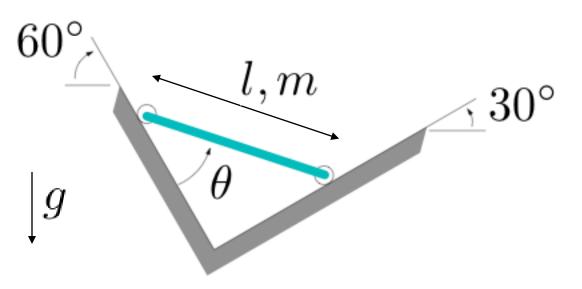
$T + V = \mathbb{E}; \ T = 0 \Rightarrow V = \mathbb{E} = \text{constant}$

$$\left. \frac{\partial V}{\partial q} \right|_{q=q^*} = 0 \Rightarrow q^*$$
 is an equilibrium point

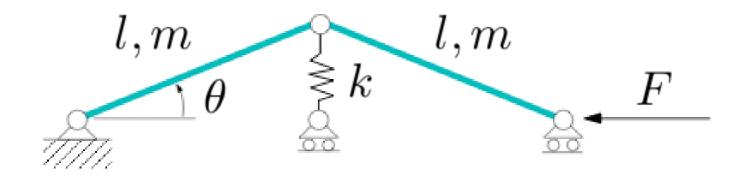
Stability:

$$\left. \frac{\partial^2 V}{\partial q^2} \right|_{q=q^*} > 0 \implies V(q^*)$$
 is a minimum: **STABLE**

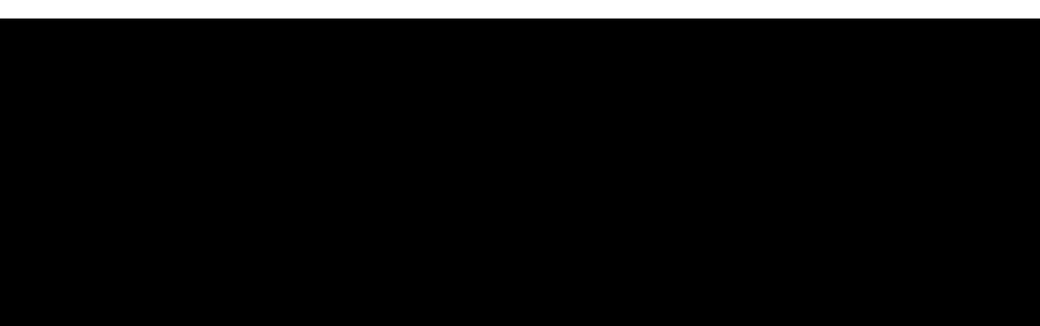
$$\left. \frac{\partial^2 V}{\partial q^2} \right|_{q=q^*} < 0 \implies V(q^*)$$
 is a maximum: **UNSTABLE**



Is the equilibrium position stable?



Natural length of spring is 0 Maximal *F* for which horizontal position is stable?



Stability of Lagrangian systems

Lagrangian system: Applied forces can be derived from a generalised potential *V* Same procedure as for conservative systems

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$

Equilibrium:

$$\dot{q} = \ddot{q} = 0 \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$$

Equilibrium condition: $-\frac{\partial L}{\partial q} = 0$ with $\dot{q} = 0$ $L = T - V = T_2 + T_1 + T_0 - V$

If $\dot{q} = 0$ then $T_2 = T_1 = 0$ and then...

Equilibrium condition:

$$\frac{\partial (V - T_0)}{\partial q} = 0$$

$$V_{\rm eff} = V - T_0$$

is defined as the effective potential



Equilibrium configuration

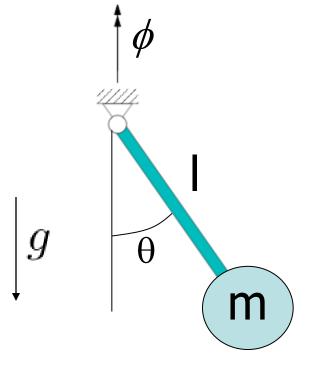
$$\frac{\partial V_{\text{eff}}}{\partial q} = 0$$

$V_{\rm eff}$ is a minimum: **STABLE**

$V_{\rm eff}$ is a maximum: **UNSTABLE**

The effective potential is also present in the Jacobi integral (Török, pg. 124)

$$h = T_2 - T_0 + V = T_2 + V_{\text{eff}}$$



Spherical pendulum

Is the steady motion stable?

