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Gyrodynamics 





Steady precession 
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There is an error in equation (4.38) 
and on top of page 223 of the textbook  
corresponding to this course. 



Steady precession for            ? 

Steady precession for            ? 

This slide corresponds to a sample problem that can  
be found in the assignments section of this course 



Calculus of Variations 





Equations of motion? 



What is the shortest path 
between two points? 



= integral functional 
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Find such that 

is minimal 

= variational problem (calculus of variations) 



What is the fastest path 
between two points? 







Find such that 

is minimal 
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This is what we call functionals: 
Real-valued expressions of functions 

defined within an interval 



Calculus of variations 

Find the function y(x) that minimizes 
a functional 



For normal functions one has that if 

then x* provides an extremum (maximum  
or minimum) to f 



For functionals  
one needs to  
define what 
is understood as  
a variation 



If y* provides an extremal to a functional I, 

for any arbitrary perturbation       such that 



; if I is an extremal at y* then 



Fundamental lemma: 

implies that 



Euler-Lagrange equation 



gas 
flow 

Shape y(x) for 
minimal resistance? 

(assume axial  
symmetry about x) 







Variational operator 



Function y provides an extremal of I if 

is comparable to a differential 





Since represents any variation of  

and we end again with 



Euler-Lagrange equation 



Natural boundary conditions 



where  

but nothing is said about 



is a natural boundary condition 


