Dynamics \& Stability AE3-914

Gyrodynamics

$$
I_{3}=I_{s}
$$

$$
I_{1}=I_{2}=I
$$

$$
T=\frac{1}{2}\left[I\left(\dot{\phi}^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right)+I_{s}(\dot{\phi} \cos \theta+\dot{\psi})^{2}\right]
$$

Steady precession

$$
\ddot{\theta}=\dot{\theta}=0 \quad \frac{\partial R}{\partial \theta}=\frac{d V_{e f f}}{d \theta}=0
$$

$$
\begin{gathered}
R\left(\theta, \dot{\theta}, C_{\phi}, C_{\psi}\right)=-\frac{1}{2} I \dot{\theta}^{2}+\frac{\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2}}{2 I \sin ^{2} \theta}+\frac{C_{\psi}^{2}}{2 I_{s}}+m g l \cos \theta \\
V_{e f f}(\theta)=\frac{\left(C_{\phi}-C_{\psi} \cos \theta\right)^{2}}{2 I \sin ^{2} \theta}+\frac{C_{\psi}^{2}}{2 I_{s}}+m g l \cos \theta \\
\text { Eq. of motion: } \quad \frac{d}{d t}\left(\frac{\partial R}{\partial \dot{\theta}}\right)-\frac{\partial R}{\partial \theta}=0
\end{gathered}
$$

There is an error in equation (4.38) and on top of page 223 of the textbook corresponding to this course.

Steady precession for $\theta=90^{\circ}$?

 Steady precession for $\theta=60^{\circ}$?This slide corresponds to a sample problem that can be found in the assignments section of this course

Calculus of Variations

$$
\text { و } \quad E I, L \longrightarrow m
$$

$$
m \ddot{u}+\frac{3 E I}{L^{3}} u=0
$$

$$
E I, L, \rho
$$

Equations of motion?

What is the shortest path between two points?

$$
\begin{aligned}
d s & =\sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x \\
s_{a b}(y) & =\int_{x_{a}}^{x_{b}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x \\
& =\text { integral functional }
\end{aligned}
$$

Find $y(x)$ such that

$$
\int_{x_{a}}^{x_{b}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x \quad \text { is minimal }
$$

$=$ variational problem (calculus of variations)

What is the fastest path between two points?

$$
\begin{gathered}
d t=\frac{d s}{v} \\
v=\sqrt{2 g y(x)}
\end{gathered}
$$

$$
t_{a b}=\int_{x_{a}}^{x_{b}} \frac{\sqrt{1+\left[y^{\prime}(x)\right]^{2}}}{\sqrt{2 g y(x)}} d x
$$

Find $y(x)$ such that

$$
t_{a b}(y)=\int_{x_{a}}^{x_{b}} \frac{\sqrt{1+\left[y^{\prime}(x)\right]^{2}}}{\sqrt{2 g y(x)}} d x
$$

$$
s_{a b}=s_{a b}(y) \quad t_{a b}=t_{a b}(y)
$$

This is what we call functionals: Real-valued expressions of functions defined within an interval

Calculus of variations

Find the function $y(x)$ that minimizes a functional

$$
I(y)=\int_{x_{a}}^{x_{b}} F\left(x, y, y^{\prime}\right) d x
$$

For normal functions one has that if

$$
f^{\prime}\left(x^{*}\right)=0
$$

then x^{*} provides an extremum (maximum or minimum) to f

For functionals

 one needs to define what is understood as a variation

If y^{*} provides an extremal to a functional I,

$$
I\left(y^{*}+\varepsilon \eta\right) \geq I\left(y^{*}\right)
$$

for any arbitrary perturbation η such that

$$
\eta\left(x_{a}\right)=\eta\left(x_{b}\right)=0
$$

$I=I(\varepsilon)$; if I is an extremal at y^{*} then

$$
\left.\frac{d}{d \varepsilon} I\left(y^{*}+\varepsilon \eta\right)\right|_{\varepsilon=0}=0
$$

Fundamental lemma:

$$
\int_{x_{a}}^{x_{b}} G(x) \eta(x) d x=0 \quad \forall \eta \mid \eta\left(x_{a}\right)=\eta\left(x_{b}\right)=0
$$

implies that $G(x) \equiv 0 \quad \forall x \in[a, b]$

Euler-Lagrange equation

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0
$$

Shape $y(x)$ for
minimal resistance?
(assume axial symmetry about x)

$$
\begin{aligned}
l & =5 \mathrm{~m} \\
R & =1 \mathrm{~m}
\end{aligned}
$$

$$
y=R\left(\frac{x}{l}\right)^{3 / 4}
$$

Variational operator

$$
\begin{aligned}
y(x) & =y^{*}(x)+\varepsilon \eta(x) \\
& =y^{*}(x)+\delta y^{*}(x)
\end{aligned}
$$

$$
I(y+\delta y)=I(y)+\delta I
$$

Function y provides an extremal of I if

$$
\delta I=0
$$

" δ " is comparable to a differential

$$
\begin{aligned}
\delta I & =\int_{x_{a}}^{x_{b}} \delta F\left(x, y, y^{\prime}\right) d x \\
& =\int_{x_{a}}^{x_{b}}\left(\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right) d x
\end{aligned}
$$

$$
=\int_{x_{a}}^{x_{b}}\left(\frac{\partial F}{\partial y} \delta y-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right) \delta y\right) d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{a}} ^{x_{b}}
$$

Since δy represents any variation of y and $\delta y\left(x_{a}\right)=\delta y\left(x_{b}\right)=0$ we end again with

Euler-Lagrange equation

$$
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0
$$

Natural boundary conditions

$\delta I=\int_{x_{a}}^{x_{b}}\left[\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right] \delta y d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{a}} ^{x_{b}}$
where $y\left(x_{a}\right)=y_{a}$
but nothing is said about $y\left(x_{b}\right)$

$$
\left.\frac{\partial F}{\partial y^{\prime}}\right|_{x=x_{b}}=0
$$

