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Gyrodynamics
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Steady precession
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There is an error in equation (4.38)
and on top of page 223 of the textbook
corresponding to this course.
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» Steady precession for 6 = 90° ?
Steady precession for 6 = 60° ?
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This slide corresponds to a sample problem that can
be found in the assignments section of this course




Calculus of Variations
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Equations of motion?




What is the shortest path
between two points?




ds =1+ [y' ()] dx

Sap(Y) = _‘?\/1"' [y' (x)]"dx

= integral functional




Find y¥(z) such that

/mb V1+ [y (z)]2dz is minimal

= variational problem (calculus of variations)




What is the fastest path
between two points?
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Find y(z) such that

L (y) = fJ1+[y'<x>] "

T 129 y(x)

IS minimal




Sab = Sab (y) bab = fﬂb(y)

This is what we call functionals:
Real-valued expressions of functions
defined within an interval




Calculus of variations

Find the function y(x)that minimizes
a functional

I(y) / F(z,y,y")dx




For normal functions one has that if
f'(z*) =0

then x” provides an extremum (maximum

or minimum) to 7




For functionals

one needs to

define what y(z) S

IS understood as e y* ()
a variation




If y~ provides an extremal to a functional 7
I(y* +en) > 1(y*)

for any arbitrary perturbation 7 such that
n(zq) = n(zp) =0




I = 1I(e); if Iis an extremal at y*then
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Fundamental lemma:

[ G@n@ds=0 valn(za) = n(a) =0

implies that G(z) =0 Vz € |a,b]




Euler-Lagrange equation
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Y, Shape y(x) for

~—" V'R minimal resistance?
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S~/ T (assume axial

1 symmetry about x)
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flow
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Variational operator

y(z) = y*(z) + en(x)
= y*(z) + 0y*(x)




I(y+ dy) = 1(y) + 01
Function y provides an extremal of 7if
0l =0

“0” is comparable to a differential
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Since oy represents any variation of ¥
and dy(z,) = dy(xp) = 0 we end again with




Euler-Lagrange equation
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Natural boundary conditions
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but nothing is said about y(zs)
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IS @ natural boundary condition




