This course introduces the basic components of an airframe structure and discusses their use and limitations. The realities of composite design such as the effect of material scatter, environmental knockdowns, and damage knockdowns are discussed and guidelines accounting for these effects and leading to robust designs are presented.
The resulting design constraints and predictive tools are applied to real-life design problems in composite structures. A brief revision of lamination theory and failure criteria leads into the development of analytical solutions for typical failure modes for monolithic skins (layup strength, buckling under combined loads and for a variety of boundary conditions) and stiffeners (strength, column buckling under a variety of loads and boundary conditions, local buckling or crippling for one-edge and no-edge-free conditions). These are then combined into stiffened composite structures where additional failure modes such as skin-stiffener separation are considered. Analogous treatment of sandwich skins examines buckling, wrinkling, crimping, intra-cellular buckling failure modes. Once the basic analysis and design techniques have been presented, typical designs (e.g. flange layup, stiffness, taper requirements) are presented and a series of design guidelines (stiffness mismatch minimization, symmetric and balanced layups, 10% rule, etc.) addressing layup and geometry are discussed. On the metal side, the corresponding design practices and analysis methods are presented for the more important failure modes (buckling, crippling) and comparisons to composite designs are made. A design problem is given in the end as an application of the material in this Part of the course.
Provide a link between standard introductory courses in metals and composites and actual applications with focus on composite structures. It is a summary of the main methods used to design and analyze composite and metal structures in practice. Show how some of the approximate methods used in design can be derived and what the limitations of such methods are.
-
Subjects
- 1. Introduction
- 2. Classical Laminate Theory (CLT)
- 3. Design considerations with composites
- 4. Energy methods for composite plates
- 5. Buckling of composite plates
- 6. Post buckling of composite plates
- 7. Composite of stiffeners
- 8. Crippling of stiffeners
- 9. Skin stiffened structures
- 10. Panel breaker condition
- 11. Composite sandwich structures
- 12. Skin-stiffener separation
- 13. Skin wrinkling
- 14. Fittings and pressurized structures
- 15. Exercises
Advanced Design and Optimization of Composite Structures I by TU Delft OpenCourseWare is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at https://ocw.tudelft.nl/courses/advanced-design-optimization-composite-structures/.