Axial Loaded Members: Summary and Further Reading

Course subject(s) 2. Axial Loaded Members

Summary of Key Equations

In this unit, we examined the development of a Force-Displacement relation for axial loaded members. For a generic axial loaded member where the internal axial force (P), material stiffness (E), and cross-sectional area (A) all vary with position x along the length of the beam (L), this relationship can be expressed as:

\[\delta=\int_{L}\frac{P(x)}{E(x) A(x)}dx \]

In many cases, we deal with axial loaded members with a uniform cross section, uniform material stffness, and uniform internal load. In this case, the above relationship reduces to:

\[\delta=\frac{PL}{EA} \]

Some axial loaded members, such as cables and springs, have complex geometries. In these cases, effective stiffnesses (k) or effective areas (Aeff) are determined experimentally to relate load and deformation:

\[\delta_{spring}=\frac{P}{k} \]

\[\delta_{cable}=\frac{PL}{EA_{eff}} \]

Further Reading and Problems

2.1 Load-Deformation Behaviour of Axial Loaded Members
Supplementary textbook reading: Ch. 4.1 – 4.3, 4.6
Practice problems: 4-1, 4-5, 4-17, 4-27, 4-29

2.2 Statically Indeterminate Problems
Supplementary textbook reading: Ch. 4.4 Р4.5
Practice problems: 4-46, 4-57, 4-66

Creative Commons License
Aerospace Mechanics of Materials by TU Delft OpenCourseWare is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at
Back to top