Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency.

Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques.

The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.

This course aims to give insight in the chain of hydrogen production, storage and use, and the devices involved. Electrical storage in the form of batteries will be discussed. Physical and materials science advances that are required to bring forward hydrogen and batteries as energy carriers will be highlighted.

Creative Commons License
Sustainable Hydrogen and Electrical Energy Storage by TU Delft OpenCourseWare is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at https://ocw.tudelft.nl/courses/sustainable-hydrogen-electrical-energy-storage/.
Back to top

Help us improve TU Delft OpenCourseWare

Help us to get to know you and your ideas on how to improve the OCW website. If you take 5 minutes and fill out our survey, you would be very helpful.

Open Survey