Solar Cell Design Rules
Course subject(s)
3. Solar Cell Operation, Performance and Design Rules
In this video Prof. Arno Smets talks about the different ways solar cells make use of the mechanisms that generate electricity. He talks about the direct and indirect band gap, and the requirements for certain band gap materials to generate current.
You will find the chapter associated to the lecture below the videos.
- \( n=N_C*exp\Big( \frac{E_F-E_C}{k_B*T} \Big) \), for \( E_C-E_F\ge 3K_B*T \tag{1}\)
- \( p=N_V*exp\Big( \frac{E_V-E_F}{k_B*T} \Big) \), for \( E_F-E_V\ge 3K_B*T \tag{2} \)
The product of \( (1) \) and \( (2) \) yields:
\[ n^2_i=n*p=N_C*N_V*exp\Big( \frac{E_F-E_C}{k_B*T} \Big)*exp\Big( \frac{E_V-E_F}{k_B*T} \Big) \] \[ =N_C*N_V*exp\Big( \frac{E_F-E_C+E_V-E_F} {k_B*T} \Big)\] \[ =N_C*N_V*exp\Big( \frac{-(E_C-E_V)} {k_B*T} \Big) \] \[ =N_C*N_V*exp\Big( \frac{-E_{gap}}{k_B*T} \Big) \tag{3} \]
For excess carriers:
- \( n_p=N_C*exp\Big( \frac{E_{Fn}-E_C}{k_B*T} \Big) \), for \( E_C-E_{Fn}\ge 3K_B*T \tag{4}\)
- \( p_n=N_V*exp\Big( \frac{E_V-E_{Fp}}{k_B*T} \Big) \), for \( E_{Fp}-E_V\ge 3K_B*T \tag{5} \)
The product of \( (4) \) and \( (5) \) yields:
\[ n_p*p_n=N_C*N_V*exp\Big( \frac{E_{Fn}-E_C}{k_B*T} \Big)*exp\Big( \frac{E_V-E_{Fp}}{k_B*T} \Big) \] \[ =N_C*N_V*exp\Big( \frac{E_{Fn}-E_C+E_V-E_{Fp}} {k_B*T} \Big)\] \[ =N_C*N_V*exp\Big( \frac{-(E_C-E_V)+E_{Fn}E_{Fp}} {k_B*T} \Big) \] \[ =N_C*N_V*exp\Big( \frac{-E_{gap}+q*V_{oc}}{k_B*T} \Big) \] \[ =N_C*N_V*exp\Big( \frac{-E_{gap}}{k_B*T}\Big) *exp\Big( \frac{q*V_{oc}}{k_B*T} \Big) \]
which from \( (3) \):
\[=n^2_i*exp\Big( \frac{q*V_{oc}}{k_B*T} \Big) \tag{6}\] But \( \tau_0 \propto N^{-1}_{t} \)
Therefore:
\[ n_p=p_n\approx G_L*\tau_0 \tag{7} \]
If we solve \( n_p*p_n=n^2_i*exp\Big( \frac{q*V_{oc}}{k_B*T} \Big)\) for \( V_{oc} \)
\[ V_{oc}= \frac{k_B*T}{q}*ln \Big(\frac{n_p*p_n}{n^2_i} \Big) \]
which from \( (7) \) can be written:
\[ V_{oc}\approx \frac{k_B*T}{q}*ln \Big( \frac{G_L*\tau_0}{n_i} \Big)^2 \] \[ V_{oc}\approx \frac{2*k_B*T}{q}*ln \Big( \frac{G_L*\tau_0}{n_i} \Big) \tag{8}\]
Solar Energy by TU Delft OpenCourseWare is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at https://ocw.tudelft.nl/courses/solar-energy/.